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In this thesis, results of a study of the heuristic random search optimization method called

simulated annealing are given. Most of the results are concerned with the average amount of time

simulated annealing takes to find an acceptable solution.

v We analyzed the average time complexity of simulated annealing for the matching problem.

Although the matching problem has worst-case polynomial time complexity, we show that there is

a sequence of graphs where the average time complexity of a "natural" version of simulated

annealing is at least exponential. In contrast, we show that the "natural" version of simulated

annealing has a worst-case polynomial average time complexity if it is only required to find "near"

maximum matchings. An exponential lower bound on the minimum average time complexity over

a wide class of simulated annealing algorithms when our attention is restricted to constant tempera-

ture schedules is also given.

* aThe typical case for simulated annealing for the matching problem is also analyzed. Since we

were not able to discover a method to exactly analyze the average time complexity of simulated

annealing for the matching problem for "typical" graphs, we used approximations to estimate the

average time complexity and then checked the accuracy of the approximation with data from com-

puter simulations. Our results indicate that if we only consider graphs that have at least as many

edges as they have nodes then the average time complexity of simulated annealing for a typical

graph with n nodes is O(n4).

A technique for producing easy-to-analyze annealing processes. called the template method. is

given. It is our hope that this method will produce interesting examples of simulated annealing
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that will help us to understand the heuristic. We provide two examples of using the template

method to analyze the finite-time behavior of simulated annealing as a function of the temperature

schedule. A generalization of simulated annealing, which we refer to as the threshold random

search algorithm, is presented. We also give conditions under which no monotone decreasing tem-

perature schedule is optimal.

Finally, we discuss the use of quadratic penalty methods in conjunction with simulated

*..aiing to solve problems with equality constraints. An experimental evaluation is made

between adaptive and static quadratic penalty methods, and it is shown that adaptive quadratic

penalty methods can provide low-valued solutions over a wider range of penalty parameter values

than static quadratic penalty methods.
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CHAPTER 1

INTRODUCTION

Simulated annealing is a heuristic random search technique, introduced independently by

Kirkpatrick et al. [I] and Cemy [2], for finding approximate solutions to combinatorial optimiza-

tion problems. It is a variation of the local improvement technique in which an initial solution is

repeatedly improved by perturbing it until it reaches a "local minimum," i.e., a solution where no

improvement is possible by perturbing it. A drawback of the local improvement method is that the

search may terminate in poor local minima. Simulated annealing tries to avoid getting stuck in

poor local minima by randomly accepting some perturbations that worsen the solution as well as

accepting all perturbations that improve it.

b Simulated annealing has many of the attractions of the local improvement method, such as

the relative ease of implementation on new problems and the modest amounts of memory usually

required by these implementations. Since simulated annealing is a simple heuristic method, it has

been applied to solve a variety of problems, such as generating error-correcting codes [3], restoring

images automatically [4], and designing VLSI circuits automatically [1], and since simulated

annealing typically requires only a modest amount of memory, it has usually been applied to solve

problems with many variables. Empirical results show that simulated annealing will usually find a

better solution than the local improvement method, but at a cost of a longer run time.

With these properties, simulated annealing has been and will be applied to find approximate

solutions to many useful problems. Hence, it is important to analyze the performance of simulated

annealing and identify important parameters that govern that performance. For the remainder of

this introduction we will precisely describe a simulated annealing algorithm applied to solving a

N4,



generic combinatorial optimization probiem, briefly review some of the directions of past

theoretical research, and discuss the organization of this thesis.

Suppose we want to solve the generic combinatorial optimization problem

min{c(s): sE S),

where S is a finite set and c is a cost function c: S-+R. In addition, suppose we have a transition

probability matrix R over S and a sequence (Tk: k a 0) (called the temperature schedule ) of posi-

tive extended real valued numbers. Typically, the temperature schedule is monotone decreasing to

zero. A state s is referred to as a neighbor of s' if R5,, > 0. A simulated annealing algorithm

* applied to this problem constructs a sequence (Xk: k _> 0) of states in the following way. An initial

state X0 is chosen. Given Xk = s, a potential next state Yk is chosen with probability distribution

P[Yk = s'IXk = S1 = R=,.

Then we set

[Yk if C(YOk) C(S)

Xk -1 Yk with probability pk if c(Yk) > c(s)

- Xk otherwise,

where

Pk = exp~ -max{c(Yk) - C(S),O) )
p- e x p T k"

This specifies how the sequence (Xk: k > 0) is chosen. The random process (Xk: k > 0) produced

by the algorithm is a discrete time Markov chain, and we will call it the annealing process on sys-

tem (S, c, R) and with temperature schedule (Tk: k Z 0).

For some specified time K (which is possibly a random time), the algorithm returns XK. If

the amount of memory permits, the algorithm can be modified to return the lowest valued member

of (XO, X1 ..., XK} rather than XK. Note that if the temperature schedule is identically equal to

zero then the simulated annealing algorithm is a local improvement algorithm.

t; 64
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gWe now briefly review some directions of past theoretical research on simulated annealing.

One of the popular directions of theoretical research on simulated annealing is to determine condi-

tions on the transition probability matrix R and the temperature schedule (Tk: k > 0) so that

lim P[Xk E S*] - I,k-e

where S" is the subset of states of S that have minimal cost. The results of this type lead to

insights on the dynamics of the annealing process.

S-Another direction of theoretical research is to analyze the finite time behavior of the anneal-

ing process. We will give short descriptions of three results of such analysis. The first result, by

Mitra et al. [5], is an upper bound on the distance between the state probability vector of Xk and a

probability vector (is: s e S) such that Y x, = 1. The following is a simple corollary to their
ses'

result. Suppose the temperature schedule (Tk: k a 0) is such that Tk = log ..+ o + 1 1,

log(k+ k+ 1)

and y > rL, where r is the radius of the graph underlying the annealing process (Xk: k 0 0) and L

is a Lipschitz-like constant of the cost function. Then, for a large number of iterations k,

Z [P[Xk - S] -S] O(l/imm(2b}),

where a and b respectively increase and decrease with increasing y.

The second result, by Gelfand and Mitter [6], is a lower bound for

P[Xj E S*: for some j < k]. If the temperature schedule (Tk: k > 0) is such that exp(-I/Tk) = k- 1r

and r is large enough, then this lower bound converges exponentially fast to zero. However, if r

is sufficiently small, the bound converges to a strictly positive number.
'..

The third result, which is a corollary to a result by Lundy and Mees (7], is an upper bound

on E[min(k: Xk r S*)], and is derived in the following way. Let c = minfc(s): ES}. Suppose

for some positive r there are positive scalars a and y such that for all j > 0,
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-- c(Xo+) - c(X) < y

and

E[c(X,) - c(Xj) Ic(X) > c]1 < --a-

A trivial extension of Wald's equation [8] yields

E[min{k: Xk G S*} <c(X 0)-c +ry
a

*However, Lundy and Mees do not indicate how to find values of a and r.

Besides trivial examples, most theoretical results on the finite-time behavior of the annealing

process have been derived without much consideration of typical applications of simulated anneal-

ing. Therefore, the bounds of these results may be very loose if they are directly applied to a par-

ticular application. In Chapters 2 and 3, we analyze simulated annealing for a particular nontrivial

problem, the matching problem. Upper and lower bounds on the average time it takes a simulated

annealing algorithm to find a solution of the matching problem are presented in Chapter 2. These

bounds are worst-case bounds over all instances of the problem of a specified size. In Chapter 3,

we attempt to determine the average length of time a simulated annealing algorithm takes to find a

solution to the matching problem for a "typical" instance. The results of Chapter 3 are based on

approximations, and these approximations are checked for accuracy by comparing them to with

data from computer simulations.

In Chapter 4, we present a collection of results. A simple technique to cook up easy-to-

analyze annealing processes is given in Section 4.2. It is our hope that interesting annealing

processes that will help us to better understand simulated annealing will be produced by this

method. In Section 4.3, we present a random search heuristic, called the threshold search algo-

rithm, that is a generalization of simulated annealing. In Section 4.4, conditions are given that

insure that no monotone decreasing temperature schedules are optimal.

'I,



In Chapter 5, we consider using simulated annealing to solve problems that have equality

constraints. A technique used to solve problems with equality constraints is the quadratic penalty

method, which transforms an equality constrained problem into an unconstrained problem. Simu-

19 lated annealing can then be used to solve the transformed problem. The method of multipliers is

-" an adaptive quadratic penalty method, and through experiments we compare this method, and a

variation of this method, with the quadratic penalty method.

Finally, we summarize the results of this thesis and provide possible directions for future

research in Chapter 6.

.,I~-
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CHAPTER 2

MATCHING PROBLEM: AVERAGE PERFORMANCE FOR WORST-CASE GRAPHS

2.1. Introduction

The introduction of this chapter is divided into four subsections. The motivation of the

results of the chapter is provided in Subsection 2.1.1. Subsection 2.1.2 contains the basic simu-

lated annealing algorithm for the matching problem that is analyzed in Subsection 2.1.3, Sections

2.2 and 2.3. In Subsection 2.1.3, a convergence in probability result of the basic simulated anneal-

* ing algorithm in Subsection 2.1.2 is given. Finally, an organization of the rest of the chapter is

presented in Subsection 2.1.4.

2.1.1. Motivation

S,~ In this chapter, we consider simulated annealing applied to maximum matching, a fundamen-

tal problem in combinatorial optimization. An instance of the maximum matching problem is a

simple graph G = (VE), where V denotes the set of nodes of G and E denotes the set of

(undirected) edges of G. A matching M in G is a subset of E such that no two edges in M share a

node. The maximum matching problem, for instance G, is to find a matching in G with maximum

cardinality.

The maximum matching problem is easy in the sense that there is a known deterministic

algorithm which solves the problem in O(4TVIE1) steps (see [9]), where IVI is the cardinality of

'V. However, we do not consider maximum matching to be trivial, since the deterministic algo-

rithm is somewhat subtle.
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2.1.2. The basic simulated annealing algorithm for maximum matching

We will here describe what is perhaps the most obvious way to apply simulated annealing to

search for the maximum matching of a graph G = (VE). Let T1. T2... be a nonincreasing tem-

perature schedule. We say that an edge e is matchable relative to a matching M if e d M and if

M+e is a matching (here M+e is our notation for M u (e), which we use only if e i M). Let

Q(M) denote the set of matchable edges relative to matching M.

To begin the algorithm, choose an arbitrary matching Xo in G -- for example. X0 could be

the empty set 0. Having selected XO, X, .... X k, choose Xk+I as follows. Choose an edge e at

random, all edges in E being equally likely.

If e is matchable relative to Xk, let Xk1 = Xk + e.

l Xk - e with probability exp(-lITk)
Ife E Xk, let Xk+1=t

j Xk with probability I - exp(-I/Tk).

Else, let Xk+I = Xk.

Note that (Xk: k > 0) is an annealing process on system (S, c, R), where S is the set of all match-

ings, c(s) is the negative of the cardinality of s, and R is a transition probability matrix over S such

that

{EI i *j and liej = I

, R0 liojl> I
I - J:R, i - j.

2.1.3. Convergence In probability

We begin by giving some standard notation [101. Given a matching M in G. a node v is

exposed if no edge in M is incident to v. A path p in G is a sequence of nodes p =

[v,v 2.  Vk]. where k k I, the nodes ,:11v2.  Vk are distinct, and [v,,v,.l] e E for

vq
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I S k-1. The length of such a path is k-I. The path is augmening for M if its length is odd

(so k is even), if v, and vi are exposed, and if [v,.v~l ] e M for even values of i with 2 s i ! k-2.

A well-known result of Berge and Norman and Rabin is that a matching M does no( have max-

imum cardinality if and only if there exists an augmenting path for M (10. Theorem 10.11.

Let Mo be a matching which does not have maximum cardinality, and let [vi, v2 ... . Vk be'p

an augmenting path for M o. Starting from M o. it is possible for the basic simulated annealing

algorithm to r'each a higher cardinality matching by passing through the sequence of matchings
,p.

M I IM.. . Mk- given by

MI = MO - v, v 3 1 M 2 - MI + [v'v2]

M3 = M2 - [v4 , v5 1 M4 = M3 + [v3,v4 ]

Mk-3 = Mk..4 - (v_2,vk-I1 Mk_2 = Mk_3 + [vk.3,Vk_2]

and finally

Mk_! = Mk.z + [Vk.v...I

The matchings in the sequence have cardinalhry at least as large as ti, cardinality of Mo minus

one. In the terminology of [II]. the depths of the local maxima for the matching problem are at

most one. The following theorem is thus an immediate consequence of 1II, beorem 1]. A

matching M is said to be maximal if no edge is matchable relative to M. Let SO denote the set of

matchings with maximum cardinality.

Theorem 211 Let G = (V.E) be a graph with a nonempy set of edges E. If all maxima]

matchings of G are in S" then

liM P[Xk E S*]=- I if and only if lir exp(-l]Tk) =0.
k -$- k -

If some maximal matching is not in S then

@I# ~ ~' ., .**~ &



urni PIXk 6 S*1=- if and only if lim exp(-lrrk)=-O and i exp(-lfrk)=+mk--" k--= o

Theorem 2.1.1 gives a large-time asymptotic result for each fixed instance G, and the condi-

tions do not depend on the size of G. In contras:t, our goal in this paper is to give asymptotic

l results as IVI tends to infinity. Interesting, general work on the analysis of simulated annealing

run for a finite number of iterations has appeared (see [51, [12], and [6]. for example). However,
.1

the general theory does not determine, for example, whether simulated annealing exactly (or

nearly) solves the maximum matching problem in an amount of time growing as a polynomial in

IVJ . Moreover, it is not clear yet that any general theory could answer such questions. In this

chapter, we present results that we would like to see established more generally.

2.1.4. Organization of the chapter

In Section 2.2, we show that for a certain family of graphs the basic annealing algorithm, or

any other algonthm in a fairly large related class, cannot find maximum cardinality matchings

using average time that is upper bounded by a polynomial in IV i. In contrast, we show, in Sec-

uon 2.3. that a degenerate form of the basic simulated annealing algorithm (obtained by letting Tk

be a suitably chosen constant, independent of k) produces matchings with nearly maximum cardi-

nabty using average time that is upper bounded by a polynomial in IV i. Sections 2.2 and 2.3 can

me read independently. In Section 2.4, we present a lower bound on the average time simulated

annealing takes to find nearly maximum cardinality matchings when the temperature schedule is

.. restncted to be of constant value.

S:1 2.2. The Impossibility of Maximum Matching in Polynomial Average Time Using Certain

Simulated Annealing Type Algorithms

Certain local search algorithms for the maximum matching problem will be considered in this

section The algonthms will not be restncted much in an attempt to include several implementa-

tions of simulated annealing. Both the basic simulated annealing algonthm (given in Subsection
Vm
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2.1.2). when Xo = 0. and a particular multistart-descent algorithm will be included Nevertheless.

it will be proved that the algorithms cannot reach a maximum matching in average Lime bounded

by a polynomial in IV i, for a particular family of graphs.

First, we allow the "temperature" to depend on both time and the current and past states of

the algorithm. Second, we assume that the type of each move can be specified from among the

three possibilities whenever they exist: addition of an edge, deleuon of an edge, no change. The

key restriction we do impose is that given the type of a move, the location of the edge to be added

or deleted is uniformly distributed over the possible locations.

We thus view the sequenca X0. Xi.... of states generated by the algorithm as a controlled

Markov process. Suppose that "controls" a, and d, are given such that fMr each t-

C. !. a, d, a, + d, e [0, 11 with probability one, and a, and d, are functions of (X0 ,.. XO.

"

I - a - d, if M = M'

d,/IMI if e E M and M' - M--e

C 2. P[X,. = M' IX, = M. X,_. X o) =

a,/IQ(M) I if ee Q(M) and M' = M+e

0 if IMOM'I ? 2.

whcre M9M' denotes the symmetric difference of M and M' (recall that Q(M) is the set of edges

matchable relative to M).

Clearly, if we choose the controls appropnately we can use this controlled Markov process to.-

.p mimic the basic simulated annealing process of Subsectior 2.1.2. We can also control the Markov

process to mimic a multistart-desccnt algorithm (although only at half speed). To do this we

assume that X0 = . We then let a4 = 1 for0 S t < S1. where S, is the first time that a maximal

matching is reached Then we let d, = I for S, S t < 2Sj. which guarantees that X, = forwhc*tat © o
,



t =2S 1. We then keep repeating this process.

The family of graphs we will focus on is (GI, G2. G3- ) where G. (V,E).

V M( i I Si. j Sn+I)Q(vy: I S i. j Sn+l).

E - HtB. H u H1, B- B,.

H1 = ((u.vj]: 1 S n+l) for jsuch Out I S j Sn+l,

and

"I' B= ItVt,Uk-l: 1 !S '-k 5 n+l) forij such that I :S Sn.

Graph G, is a bipartite graph with 2(11+1)2 nodes and (n+l1)3 edges. For each j. the subgraph of G,

induced by the nodes of edges of B, is a complete bipartite graph, and the subgraphi of G, induced

b% H, consists of n1+1 disjoint edges. The set of edges H is a matching, and it is maximum since it

leaves no nodes exposed. In addition, there are no other maximum matchings; since, by induction.

an% matching which has no nodes exposed must include the edges in HI. H2, .HI. As an

example, G3 is sketched in Figure 2.2. 1.

I The main result of this section is the following theorem.

Theorem 2 2) T Ihere exist positive constants a, and a2 such th.. the following is true. For

-anv n k I. let cX.a~d) be a controlled process for finding the maximumn matching of G, satisfying

conditions C I and C.2. [efine R* by

=* min (k: Xh is a maximum matching).

E[R* 1X0  01 a atexp~an).

In the proof of Theorem 2.2. 1, a function g(M is used to measure the distance from a match-

-'p.~,ing M to the unique maximum matching H. We will present the function g after defining some of

ats com ponenits Let V( M) - U, =f 0 For all 1, such thai I S j S n+I1. let 12,(M)i resp.
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42 V2 22 V2U 2

Figure 2.2.1. Sketch of G3.
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I Vj(M)) be the number of nodes in (uij: 1 < i : n+l) (resp., (vii: I < i S n+l ). that are exposed

relative to M. The function g is such that, for a matching M,

g(M) = cIBc'MI + !.

where c = 18,

W(x,y) = 2 min(x.y) + l(1 o.Io. Yl,

and I ( is the indicator function. Note that g(M) includes the term IBrEMI and a second term

which is related to the set of edges in B that are matchable relative to M. Some trivial properties

of g are that g is nonnegative. g(H) = 0, and g(0) = 2n(n+l).

The next set of lemmas and definitions is used to show that (g(Xk): k Z 0) tends to drift away

from zero (and hence (Xk: k ! 0) drifts away from H) when (g(Xk): k 2! 0) is below a certain

threshold (see Equation (2.2.3), p. 18). After the lemmas and definitions the proof of Theorem

2.2-1 is presented.

Lemma 2.2.1 Suppose xy 2 0. ThenI
[ (1.2.3) if y 2 max{x.l)

(a) (x+l, y) - W(x.y) ,
-0 otherwise,

e ( 1.,2.3) if x amaxly,l}

C(b) W(x, y+l) - W(x,y)

=0; otherwise,

'-" (c) W0(x+l, y+l) - W(x,y) e (2.3).

i Proof Easy by inspection of Table 2.2. 1.
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Table 2.2.1. Values of W(x~y).

Nyx 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 2 3 3 3 3 3

2 0 3 4 5 5 5 5

3 0 3 5 6 7 7 7

4 0 3 5 7 8 9 9

1,.1.5 0 3 5 7 9 10 11

6 0 3 5 7 9 11 12

Lemma 2.2.2: Let M1 be a matching of G,.

P(a) Suppose e MrHj. Then g(M-e) -g(M) >O0if and only if

VjjM max(U,(M),1) or U,,(M) max(Vj(M),l1.

(b) g(M-e) -g(M) e (0, 1....6) forcee M n H.

(c) g(M--e) - g(M) e ( -c+2, -c+3) for e e M r) B.

Proof - It is easy to see that, forcee M n~ H,.

g(M--e) - g(M) = 4(V't,(M). Uj(M) + I) - w(Vr.,(M). Uj(M))

+ 1WgVj(M) + 1. U.",(M)) - W(Vi(M), Uj. 1(M)).

and, for e e M r) B)



g(M--e) - g(M) = - c + w(Vj{M) + 1, Uj+,(M) + 1) - i/(Vj(M), Uj+I(M)).

Note that Lemma 2.2.2 can be easily deduced from these equations and Lemma 2.2.1.

03

For each matching M of G,, define

A(M) = {e is matchable relative to M and g(M+e) * g(M)},

D(M) = fe e M: g(M-e) * g(M)},

A+(M) = (ce A(M): g(M+e) > g(M)), A_(M) = (e e A(M): g(M+e) < g(M)},

D+(M) = (e e D(M): g(M-e) > g(M)}, D_(M) = (e e D(M): g(M-e) < g(M)).

Lemma 2.23: Let M be a matching of G. and let 0<8<1. Then

(a) D+(M) c MnH, DM) = MnB, A_(M) c H-M, A+(M) = Br)Q(M),

(b) IA_(M) I <- 2 IA+(M) 1,

'9...

(c) ID_(M) I n8 if g(M) < nc8,

(d) ID,(M) I ? n(l - 8(- + 1)) if 0 < g(M) < ncS.
2

Proof: Part (a) is a consequence of parts (b) and (c) of Lemma 2.2.2 and the fact that c > 3.

We will now prove the following two facts, which imply part (b): every edge in A_(M) has a

0 ",node in common with an edge in A+(M) and for every edge in A+(M) there are at most two edges

in A_(M) that have nodes in common with it. Let e e A_(M). Then e e Hj for some j by part
.

(a), and moreover at least one of V~.1(M) or Uj,.(M) is strictly positive by part (a) of Lemma

2.2.2. Thus, there is at least one edge e' in Bj1tjBj which is matchable relative to M and has a

node in common with e. Then e' is in A+(M) and hence we can conclude that every edge in

A.(M) has a node in common with an edge in A+(M). On the other hand, part (a) implies

So :
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A_(M) c H, A,(M) c B, and therefore for every edge in A+(M) there are at most two edges in

A_(M) that have nodes in common with it. Part (b) is proved.

By part (a)

ID_(M)i <5 IBr-al !5 g(M)/c < n8,

which proves part (c).

We now prove part (d), which will complete the proof of Lemma 2.2.3. Let M be a match-

ing with 0 < g(M) < nc8. The fact that g(M) > 0 implies that M is not equal to the unique max-

imum matching H, which in turn implies that there exists at least one exposed node. Since g(M) <

nc, M contains fewer than n edges from BjuB2u ... uBn. Hence McrBk = 0 for some k. Now,

the set of nodes

Z= {vij: 1 i: n+l, 1 j:k) u {uij: li!n+l,k+ <j5n+l)

contains exactly half of the nodes of the graph. Since MrtBk = 0, each edge in M is incident to a

node in Z and a node not in Z. Thus, Z contains half, and therefore at least one, of the exposed

nodes, so at least one of the 2n numbers

VI(M .... V,(M), U2(M), .... (M)

is nonzero. By the symmetry between the Uj's and Vj's, we can restrict attention to the case that

- for some j with 1 < j <: n, Uj+(M) is as least as large as any of the other 2n-1 numbers. Then

Uj+1 (M) ? max(VJ(M),l) so Mr)Hj c D+(M) by part (a) of Lemma 2.2.2. Hence

ID+(M) Z I Mr--l I = n+l - Vj(M) - [Mr"aBjI

= n+l - min(Vj(M), U,+t(M)) - IMr)BjI

a n - g(M)/2 - g(M)/c > n(l - 8(-i + 1)),
2

which proves part (d).

0
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. Lemma 2.2.4: Now set 5 = 1/43. If M is a matching of G, such that 0 < g(M) < ncS, then

IA(M)I-' [g(M+e) - g(M)] ; I if A(M)* 0 (2.2.1)
ce A(M

and

1
ID(M)h [ g(M-e) - g(M)] a if D(M) * 0. (2.2.2)

ce D(M)

Proof: By part (a) of Lemma 2.2.3 and parts (b) and (c) of Lemma 2.2.2, we have

c-3 ifee A+(M)
" g(M+e) - g(M)2

-6 ife e A...(M),

which, together with part (b) of Lemma 2.2.3, yields

IA(M) 1  1 [g(M+e) - g(M)] > IA(M)I-[(c-3)IA4(M)I - 61A..(M)I] > 1.

Similarly, by part (a) of Lemma 2.2.3 and parts (b) and (c) of Lemma 2.2.2, we have

g(M-e) - g(M)

>-c+2 ife e D_(M),

which, together with parts (c) and (d) of Lemma 2.2.3, yields (2.2.2).

Proof of Theorem 2.2.1: Let t(O) = 0, and, for all k > 0, let t(k) min m t >

t(k-1): g(X) * g(Xt k-))}. We can and do assume that P[R < +< Xo = 0] = 1. It follows that,

with probability one, R'e {t(1), t(2)....}, which implies that

P[t(k+l) < --1R" > t(k), X0 = 01 = 1.

Given a matching M, define s(M,1) and s(M,-1) to be the normalized sums appearing in Ine-

qualities (2.2.1) and (2.2.2) respectively, whenever they are well defined. By Lemma 2.2.4, s(M,O)



_ 1/2 if 0 < g(M) < nc8 and if s(M,O) is well defined.

Let Ek = 1 if the jump at time t(k+l) is caused by the addition of an edge, and let 8 k = -1 if

the jump at time tk+1 is caused by the deletion of an edge.

Suppose M is a matching with 0 < g(M) < ncS. Then

E[g(Xqk+) - g(Xt1 ) IXtek+l> 1 = M, Ek = 0, Xt(k+l._2 .. . ,Xo] = s(M,0) .
2

Averaging over appropriate values of ek and (Xi: t(k) < i < t(k+l)), it follows that

.E[g(X,+, - g(Xt(k) - -'11 g(Xq) < ncS, R" > t(k), X0,. . . ,Xt(k)] > 0. (2.2.3)

,, Also, by parts (b) and (c) of Lemma 2.2.2, the magnitudes of the increments of g(X) are bounded

by c - 2. Thus, Theorem 2.3 of [13] is in force if we define (Y, eo, a*, b*) by

Yk = -g0(X), F-0 I. a* = -ri:c, and b* = 0. (2.2.4)

Using the fact that Yo = -g(0) = -2n(n+l) 5 a*, this produces constants il > 0, p e (0,1) and

D" > 0 such that

P[g(Xt1 k) = 0, R" > t(k-1) 1Xo = 0] 5 u, (2.2.5)

where u = D'exp(-lncS)/(1-p). The term P[R" = t(k)1Xo = 0] is less than or equal to the left

side of Inequality (2.2.5), because if Xt 0) is the maximum matching then g(Xt0,) is equal to zero.

Therefore, P[R" = t(k)IX 0 = 0] < u. Since R" e {t(1), t(2),.. .) and, for all k, t(k) > k, we have

k

P[R* > kJX o = 0] > P[R" > t(k)JX o = 0) = 1-7 P[R = to)jXo = 0)] max{O, 1-ku).
j=e

Hence,

p..;

" p.," , , ." . " . ', . " ." -" ."." - ' . . ' " .¢," . ."
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pE[RIXo=0]=j P['kX= ]: a(,-u2-
k-0 k-0 2u

Thus, taking o = (1-p)/2D* and a2 = rlcS, Theorem 2.2.1 is proved.

°0

Remark: Some extra work shows that Conditions D.1 and D.2 of [13] are satisfied for Y, a*

and b" given in (2.2.4) and il = .0033683, p = .9998, a* = -n&c, b*=0 and D* = 1. This shows

that Theorem 2.2.1 above is true for a, = .0001 and 02 = .0014.

2.3. Near Maximum Matching in Polynomial Time

Let d" denote the maximum node degree of the graph G and let m* denote the maximum of

the cardinalities of matchings in G. The next theorem is the main result of this section.

* Theorem 2.3.1: Let 3> 1. Consider a run of the basic simulated annealing algorithm (of

Subsection 2.1.2) with Tk = T for all k, where exp(-I/T) = X and . is given by

and o" = 1IV1(2d*)' 1 .

3 IV Io*

Let R denote the random time R = min{k: IXkI > m" (1-1). Then ER < 243 2 IVl(2d) 2 .

Remarks: (1) If 03 and d* are bounded as IV - -, then ER = o(IV I), In the proof below

-, we see that three of these five factors of IVI arise from our upper-bound D1 on the mean time the

*. -> algorithm takes to make a single move. A smaller average run time can be achieved by using an

efficient implementation of an algorithm that simulates Xj(j), Xj2) .... , where J(k) is the time

process (Xk: k > 0) makes its kth move (see [14]).

(2) Since 2d" < 2IV1, we have with no restriction on d" that ER < 613220 IV13+20. Also note

that if 13> m* then XR is a maximum matching.
-J

.,

J .

' I:' " , , . , -" - "- " , " " e ,, % " ",'? " " '' 4 '
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(3) We will briefly comment on our choice of constant T (equivalently, on our choice of tem-

perature). It must be large enough so that the process (Xk: k > 0) "jumps sufficiently often",

which is reflected in the bounds given in Lemmas 2.3.1 and 2.3.2a below. On the other hand, T

must be small enough so that there is a- net drift towards larger matchings, enabling us to obtain

the bound of Lemma 2.3.3 below.

We chose Tk to be independent of k, though we can see some motivation for letting it

decrease as k increases. More precisely, it is clear that an improved algorithm can be obtained by

letting Tk be a decreasing function of IXk[. For example, it is shown in the proof of Claim 2.3.1

below that a matching M in G has an augmenting path of length at most I + 2JM1(m*-IMI).

This bound increases sharply as IMI approaches the final value of IXkI, which is m*(l-I/), and

in the proof we replace jMj in the bound by this final value. However, working with the IM -

dependent bound shows that a larger value of T can be used when IXk I is small so that the algo-

rithm "jumps more often," while maintaining a sufficient drift towards larger matchings.

We chose Tk to be independent of k primarily for two reasons: (1) we wanted to demon-

strate that Tk can be chosen independently of the algorithm state ("open-loop" in control-theoretic

terms) and (2) we do not think the complexity bounds can be improved much by letting Tk be

either a function of IXk I or a decreasing function of k, because our choice of Tk is tuned to the

situation when 1XkI is close to its target value m*(l-1/3), and this situation is the most time con-

.' "' suming for the algorithm anyway.

Finally, we think it is significant that we need to decrease T as the problem size increases. It

suggests that if the sequence TI, T2... is to be chosen independently of the graph, it should be

decreasing.

' . .. ,

O4
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Proof: Define a random process (Yk: k 2: 0) by

Yi= XJ(1 1= 0,1,2,....

where J(0) =0 and, for i 2: 0,

J(i+l) = min(k > J(i): Xk * Xk-1.),

and define

R(Y) = min~i: JYJ 2! m (I - 1.)).

Note that I Yj+ YI -IY e (-I,1I) with probability one for each i.

Next, define a random process (4k: k a 0) by

where S() =0, S(l) = Iland, fori ? 1,

and defineS(i+ 1) = min [j: j > S(i), I YjI - I Yj-2I e 1-2, 2))

R(Z) = min~i: 17,12! m*(1 - .1)).

Define constants DI, D2 and D3 by

D, 61V12 o), D2  2o*, D3=21VI.

Lemma 2.3.3:

E(J(i+l) - J(i)lJJ(i), (X0, X1,., X10i1 :5 D1.

Lemma 2.3.2a:

E[(S(i+l) - S(i))I(i, R(Z) ISOi), (YO, Y1,. ... I YSi)1: D2.

Lemma 2.3.3:

ER(Z) s D3.

We will next prove Theorem 2.3.1, assuming the lemmas are true. We have
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ER = EJ(R(Y)) = E (J(i+l) - 10) b  ) R O E[1(i+l) - J(i)Ii < R(Y)-Pi < R(Y)].
P-00

p.

S., , Now the outcome of the event (i < R(Y)) is determined by (J(i), (X0 . . . ,Xj(i)) So we can apply

Lemma 2.3.1 to get

ER i DiPFi < R(Y)j = DIER(Y).
w)o

Similarly, the fact R(Y) = S(R(Z)) and Lemma 2.3.2a imply that ER(Y) S D2ER(Z). We conclude

that ER < DID 2 D3 from ER S DIER y . Lemma 2.3.3. ER(Y) s D2ER(Z), and Lemma 2.3.3. This

* :will establish the theorem once we prove the three lemmas above.
-"p.

., Proof of L-nmma 2.31 By the strong Markov property of (Xk: k 2! 0),

E[J(i+l) - J(i) IJ(i). (X0, X1..... Xj(i))] = E[J(i+l) - J(i) IYJ.

Since k, = X for all k. the transition probabilities of X are time invariant, so

E[J(i+l) - J(i)IY' = MI = PLXk+i * XkjXk = M] - .

Now, fix a matching M. One of two cases is true:

Case I Some edge in E is matchable relative to M. Then

P[Xk+l * Xk IXk = M] Z
EIJ

Case 2 No two of the IVI - 21MI exposed nodes are connected by an edge in the graph.

Then

E 1 - fI -EMI] IM1(2VI -2 MI - 1)-S 2IMIIVI.

so that

C.e
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PIxk,+ , XklXk = MI= XM
IE 21VI

Hence, in either case, E[J(i+l) - J(i)IY, !5 M max( El, 21VI/X) = D1 .

Proof of Lemma 2.3 2a: Lemma 2.3.2a is trivial for i - 0. so we fix i with i Z 1. Let m be

an integer with 1 S m < m°(1-1/p). Define a set of matchings B by

B = {M: IMI = r-I or IMI = m) and let M, be a fixed matching in B. Consider the event

F = (Ys(i) = Mo, Ysi)-- E B and R(Z) > i). The outcome of F is determined by

(S(i). (Y0 . Y1.  Ys(i)), and the union of events of the form of F as M, and m vary as above is

- equal to the event {R(Z) > ,}. Hence, it suffices to prove that

E[S(i+I) - S(i)IS(i), (Yo. Y1, . Y.. Ysi)]IF < !)2

for arbitrary fixed values of m and M, as above. Without loss of generality, we assume that if

IMo1 = m-I then Q(M 0 ) * 0; otherwise, F = 0 (recall that Q(M0 ) is the set of matchable edges

relative to M0 ).

If the event F is true then S(i+1) = min(j > S(i): YJ.1B]. Using this and the strong Markov

property of (Yk: k Z 0) we have

OR E[S(i+I) - S(i)IS(i),(Y o, . Ysi)0IlF = E[min(j > S(i):Y) 4 B) - S(i)IYs(i) - MJ1I".. (2.3.1)
= E[S IYo = M,,IIF,

where S denotes the stopping time S = min{j > 1: YJ B).

Let B be the set of matchings B= (M m-i. Note that Bc B. We let (Y'4. k Z 0)

denote a stationary-transition Markov chain with state space B and one-step transition pmbabilities

determined by conditioning (Y". k 2! 0) to stay in B for each consecutive jump:

P['4, 1 = '[Yk = M = P1 YkI = M'fYk = MI/A(M)
4,.



24

for M, M' in B. where A(M) - PIYk., e BIYk = M.

,.-. Define a stopping time S by S = minik a 1: k e B- B). Let . denote a random variable

on the same (or possibly enlarged) probability space as (Yo, Y, .) such that

P - - k-I
~P[S- > kIYo.Y, ....] = 1"I A(Y,).rY.0

Let S= min(S.,S_. If we impose the conditions Yo = MD and Yo =M then

(S, (Yk. 0 : k < S)) and (S. (Yk: 0 ! k < S)) have the same distribution. Since S k S.. it follows

that

01
E[S IYo = M.] S EIS+ IYO = M.]. (2.3.2)

Lemma 2.3.2a is implied by (2.3.1), (2.3.2) and Lemma 2.3.2b, which is stated and proved next.

0

Lemma 2.3 2b: Under the conditions given in the proof of Lemma 2.3.2a

E[S.IYo = M.] S 2o)'.

Proof of Lemma 2.3.2b. Either JMo = m or iMoJ = m-1. We will prove that if jM.j = m.

then

E[S..IYO = Mo ] 2w' - 1. (2.3.3)

This will imply the lemma in general. Hence, we assume that JMo1 = m for the rest of the proof

of Lemma 2.3.2b.

For any matching M, let f(M) denote the length of the shortest augmenting path for M. The

function fPM) is well defined if M is not a maximum matching (in particular if IMj = m), and

f(M) E (1. 3. 5. Let -denote the maximum of f(M) over all M with IMI = m.

"A=
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Claim 2 3 1 [151 LS 2-.

r' Proof Let M be a matching with JM = m and let M' be a maximum cardinality matching in

G Let G' denote the graph with a set of nodes V and a set of edges M9M*, where MOM*

S"denotes the symmetric difference of M and M" Each node in G' has incident to it at most one

edge from M and at most one edge from M'. Thus, all maximal connected components of G' are

paths or cycles, and all cycles have even length The cycles and even length paths each have an

-U" equal number of edges from M and M', while each odd length path has exactly one more edge of

M" than M and is an augmenting path for M. Thus, there are at least m - m node-disjoint aug-

menting paths for M. which, altogether, have at most m edges of M. Thus, one of the augmenting

" paths has no more than m/(m--m) edges of M and hence has length at most 1+2m/(m'-m).

*" l Finally. l+2n'(m-m) S 2V,-1. since m _ m'(1-l/). and the proof is complete

U".

,

Claim 232 Suppose M is a matching with MI = m and define po and P, by

.1 I0 = -- and p, = min(i --. -lp0.-' 2mm

Then for all k > 0

(a) P[f(Yz,+_) 5 f(M) - 2IY-. = M] > Po if f(M) 2 3,

S(b) P[ IY . I Z'm+l IY~k = M] ?- PO if f(M)= 1,
,,.

(c) Pf(Y9k > f(M) + 21Y 2 = MI =0,

(d) P[f(Y2,2) = f(M) + 2jY2 = MI 5 P,.

Proof We will first prove part (a) under the assumption that f(M) 2 5. Choose an augment-
U"

ing path p for M of length f(M) and label some of the nodes and edges of it as indicated in Figure

2.3.1 Since p is an augmenting path of the shortest length, no neighbor of ut, except possibly

A
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V1  W1 U1 u2  *2 V2

e, 91 e2 02

%

Figure 2.3.1. An augmenting path for M.

node v1 , can be an exposed node. Also, if ul and v, are neighbors, then w, and V2 are not. Thus,

there are at most two choices for an edge e', namely el and possibly either [ujvj or iwi,vZ], such

that fM - el + e') ? f(M). There is also at least one choice of e', namely e' = et. such that

f l - e + e ') = WM) - 2. Thus.

PI f(Y 2) = f(M) - 2 1Y = M - e11 2 1/3.

This is true with el replaced by e2 as well, so

PI Pf(Y:-: = fiM) - 2jY- = M 2 PIY2.I = M - eI or Y ",I = M - eiY2k = MJ/3

..-.... -' - pa.:'- = >  = PO-
31MI 21MI

This establishes part (a) if f(M) > 5.

We will now complete the proof of part (a) by ccnsidenng the case f(NI) = 3. Let

*5 ,', W. V:J be an augmenting path for M of length 3 and let e = [w j. w2] Then e is in M,

1ON
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and nodes v, and v2 are not neighbors. Now, if e' is an edge such that

f(M - e + e') > 3 (2.3.4)

then e' must be incident to either v, or w, and to either v2 or w2.

Moreover, if e' = [v,, w2] is such an edge, then v2 and w, must not be neighbors. Thus,

there are at most two choices of e' such that (2.3.4) is true, namely e and possibly one of [vI. w2 ]

or [v,, wj] There are also at least two values of e' such that f(M - e + e') = 1, namely [vj. w1l

and [v,. w,]. Thus,

' Pf ft(YU ) = f(M) - 2 Y2, = M]> -- 2t€,+, =M - e I(Z, =M I po.

4

Pan (a) is proved.

Turnung to pan (b), assume that f(M) = I. Then Q(M) is not empty. Hence,

iPI l 1- I.. a m+l ! =MI Pf I;Kzk I --M+1 lqfz = M] -- IQ(M)I1/(IQ(M)I + )

> (1+m) -' > (l+m)-' > Po.

so that pan (b) is proved.

LetPans (c) and (d) will now be proved. Choose an augmenting path p for M of length f(M).

..< Let

r.= {(e1.e): eI E M. e2 is matchable relative to M - e, and f(M - eI + e2) 2 f(M) + 2).

, Suppose (ei,e.) E r.. Then el and e2 are incident to a common node (otherwise el is matchable

.- relative to M - el + e2. e2 is matchable relative to M. and hence f(M - el + e2) = f(M) = 1, a con-

tradiction) and el * e2 . Since p is not an augmenting path for M - el + ei, at least one of el or e2

. is incident to a node of p. This means that either e l is an edge of p or e 2 is incident to one of the

exposed nodes on the ends of p. Thus, we have narrowed down the possibilities to one of the four

cases shown in Figure 2.3.2. We can rule out the first three of these cases, because in these cases

there is an augmenting path for M - e + e2 with length at most the length of p. We have thus
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*1 V3 V2

Figure .3.2. Fur posibilitis for e1. r itrd de nth ahpaedansrih
andhorzotaly. dgs i Marebol. ode v an v3 ar th en ndesofan ugmntng at

Fiur com .on node, and iiite for isl2 arnotue. de in the path p art follow thtst-e 2)=fM ,fr anyh

(el.ej) in r, which proves part (c).

Define
.J,

W = (e2: (e,.e 2) e 17+ for some el).

If e r= W then there is exactly one edge, call it w(e), such that (w(e), e) e 17, Each edge in W is

incident to an exposed node of p so that 1W 15 2d*. Thus,

Pf f(Yzk..) = f(M} +2 I Y~ = MI =[~+ -,c M - el + e2, Y2k+i = M - e11IY~k = MI
Aex),r
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= [k+2 = M - w(e) + eIY2+, = M - w(e)]P[ f+ 1 = M - w(e)j- M]
,W

1 l1 I 1 d

<ew IQ(M-w(e))l IMI 2 IMI IM'

Together with parts (a), (b), and (c), this proves part (d) so that Claim 2.3.2 is completely proved.

0

We will now complete the proof of Lemma 2.3.2b using Claims 2.3.1 and 2.3.2. Define a

process (Uk: k 0 0) by Uk= 2(1 + f(Y ))I1(2S3). Note that Uk takes values in (0. ,.... L)

where L - (l+L)/2. Claim 2.3.1 implies that L : 13 and Claim 2.3.2 implies that

Po ifi = j-1

P[Uk+= i l Uk= j, Uk-..... ,Uol =0 if i Z j+2 (2.3.5)

L < P, if i = j+1

Let (Wk: k 2! 0) denote the Markov chain with one-step transition probabilities shown in Figure

2.3.3. From Equation (2.3.5) it follows that if W o = Uo, then the Markov chain (Wk: k > 0) sto-

chastically dominates the process (Uk: k > 0). Hence,

E[S4.IYo = M.] + I = 2E(min(j: Uj = 01 io = M.]

S 2E[min(j: Wj = 0) WO = f(M0)]

< 2E[min{j: Wj = 0) W O = L]

- - L-j)

Po j- PO
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P0  PO PO

P1  P1

... DCC I,-P

P, -'

Figure 2.3. One-step transition probabilities for the Markov chain (W k: k : 0).

2_..LL -5 2E <_ 2o)*.

P I

This establishes Inequality (2.3.3), so the proof of Lemma 2.3.2b. and hence also the proof of

Lemma 2.3.2a, is complete.

S... 0

Proof of Lemma 2.33: In the first part of the proof, we will refer to the setup in the proof of

.4- Lemma 2.3.2a. By the reasoning there, we see that for i > 1.
,, a

O* *
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P[ I ys(+,) I > No) I IS(i),(Yo.YI, . YS(i))]F = P[sYsI = m+l1YO=MO]IF

__. >[ k Y>o M.I.

". The term A(Yj) is equal to

[ Q(YP I
IQ(YI + X(m-1) if Iij- M-1

P[Yk+I k IYk -- Yj]f~~if I jl I m

As in the proof of Lemma 2.3.2a, we assume that if IMe[ = m-I. then Q(Mo) 0. Hence, if

% = M, and IYoI = m-1. then Q( 0) * 0. Moreover, if IYjI = m-1 for some j > 1, then Y -j is

a matching containing ; and so Q(Y;) * 0. Thus, given Y0 = M ,, Q(Y) 0 whenever ji =

'-l, for all j Z 0. Therefore, given Y0 = M, we have A(Y) > (1+(m-1).) - l > (1 I-I Also,

note that IYj 1- m for at least half of the values of j with 0 5 j < S+-1. Thus,

9.5-1 X.LL -s,.2 I .W
A -E[ rHA(Y() 1Yo= Mj 2!E[L(l+ - Y = .] j Ul + )v

A ~2 2

> exp(-X IV jIo/2) = exp(-1/6) 2! 5/6,

where for the second inequality we used Lemma 2.3.2b and Jensen's inequality, and for the last

two inequalities we used the inequality exp(u) > i+u. Therefore, for i > 1,

P[ Iz,+z I > 17-j1 Izo, .... -ilIR('Z)> i} Z: (5/6)I{R(Z)> i}.

Now I Z+ 1 I - 121 c (-2,-1,1,2) so that

E[ 1z,+1 1--IZ IZo, . . .ZiI{(R(M) i- -'- 2 ."')I[RZ)> i) => { ),

which implies that the process

°,1
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( -L)'(R(Z)>.i) + (IZR I _ R(Z) - 1 )I(R(Z) S ij, i = 1, 2;...

",.. is a submartingale uniformly bounded from above. Thus, by a version of Doob's optional sam-?€..

pling theorem (16, Theorem 7.4.6.ii]

IZ I - ---- -0,

which yields

ER(Z) _< 2EIZRI+1 -< 2m*+l _< IVI+l < D3.

Lemma 2.3.3, and hence Theorem 2.3.1, are completely proved.

'p3

°0

2.4. Simulated Annealing when Temperature Schedules are Constant

In this section, we consider the limitations of restricting our attention to degenerate tempera-

ture schedules that have only a single value. The main result of this section is the theorem follow-

.1 ing the next set of definitions. Let G'(n,d*) be the set of all graphs with n nodes and maximum

node degree d*, M'(G) the set of all matchings of graph G, and m*(G) the size of the largest

matching of G. Let R(G) be the set of all symmetric transition probability matrices R over M'(G)

'- with the following property: for all i, j E M'(G), there is a positive integer k and a sequence

i = i(l), i(2) ..... i(k) = j of matchings from M'(G) such that Ri 0,)) 0,) > 0 for all h such that i <

h 5 k-1. Let c be the cost function on M'(G) such that c(M) = - IMI. Suppose R is a transition

probability matrix over M'(G). Let (X(G T: k 0) be the annealing process on system

(M'(G), c, R) with temperature schedule (Tk : k > 0) such that Tk = T for all k > 0.

i Theorem 2.4.1: Suppose 0 and d are real numbers and n is a positive integer such that -22

[3 _ max(8, 2n--. Let Q(P, n, d*) equal
d -1
dW-I

AxKA I
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max inf min max E[min(k: X GR-T)I 2t (1-J- 1)m°(G)) I = MI.
Ge G'(n,d*) Te (O.-] Re R(G) MEM'(G)

Then

fl(, n, d)Z
L- j+l

-, "Remarks: (1) From Theorem 2.4.1, if 2: A then

4 5 1
Q(P3, n, d') fl(4, n, d') 2! - 1.

(2) Note that Theorem 2.3.1 implies that

-fl(p, n, d) -< 24 2n 52d) 2 2.

(3) Theorem 2.4.1 and part (2) of these remarks imply that if 03 is at least two and is con-

stant on n then n1(D3, n, n) is upper and lower bounded by polynomial functions of n such that the

" ,'*~ functions have exponents that are linear functions of J3.
'I .

We will prove Theorem 2.4.1 after presenting two lemmas and defining a graph A(XH, X),

* which is a generalization of the graph G, of Section 2.2. Graph A(XH, XL), shown in Figure 2.4.1,

consists of 4XHXL nodes and has maximum node degree 2XH + 1. Just as in graph G,, the edges\

of A(XH, XL1) are partitioned into the subsets H1, H2 , ... HL, B1, B2 .... B, -. These subsets

are indicated in Figure 2.4.1. For each i, such that 1 _< i < XL, Hi consists of 2XH edges that are

disjoint, and, for each j, such that 1 < j < ),L-I, the subgraph induced by the nodes of the edges of

Bis a cornp'--.'- bipartite graph consisting of 4XH nodes. Also note that H = vjHi is a unique

maximum matching of A(XH, XL). If XH = XL = n then A(X H, Xt) is isomorphic to G2, 1 of Sec-

tion 2.2.

00.t
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0 -

0.-

2X nodes

10

0
0 H B H B B H1 1 2 2 X-1 X

2 nodes

L

Figure 2.4.1. Sketch of graph A(XH, Xt).

Lemma 2.4.1: Let XH and n be positive integers such that n 5 2XH - 1. Let S, be the set of

all matchings of A(XH,XL) of size IHI - n. Then

I s°+t I (2Xl-n)&

IS.1 n+I

Proof. Suppose M is a matching of S.. Then M@H is a set of n node-disjoint paths, and

each path is characterized by a sequence of edges e1, e2, ... , e2k+,. where

ele Hj, e2 B j, e3 H,+I, , ..... e,'2k+lE Hj+k for some j and k. We will call such kinds of

paths stretched paths. Since (H@M)@H = M, there is a one-to-one and onto correspondence

between elements of Sn and elements of the set, Tn, of all sets of n node-disjoint stretched paths.

',

%*'V -

%.
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We will now proceed to show that

IT+ I (2XH-n)) (2.4.1)

IT.I n+1

which is sufficient to prove the lemma. Observe that from each element t of T, we can generate

" elements of T,+1 in the foUowing way. We find a stretched path p that starts in H1, ends in Hk,

and is node-disjoint from any of the paths in t. Since n < 2XH - 1. there are at least (2X.-n) "

such paths p. Then we add the path p to set t to form an element of T,+,. In this way, each ele-

ment of T, can generate at least (2XH-n)XL elements of T. 1 . But, each element of T. 1 can be

generated in this way by at most n+ l elements of T,. We can then conclude the Inequality (2.4.1).

0

Lemma 2.4.2. Let S be a finite set and c be a cost function on S. Let R be a symmetric tran-

sition probability matrix over S such that for all i. j F S, there is positive integer k and a sequence

i = i(l), i(2) ...... i(k) = j of states in S such that Ri(h)i(h+) > 0 for all h such that 0 S h < k-l.

Let y be some constant,

Cy = {s r S: c(s) < y and R, 1 > 0 for some s' such that c(s') > y},

Sy, = min{c(s): s e S -s,

and

A = (s e S - i c(s) = y}.

Let (Xk: k _ 0) be the annealing process corresponding to (S. c, R) with a temperature schedule

(Tk: k > 0) such that Tk = T for all k 2 0. Then for T > 0 there is a state s e S such that

E[min{k>o: c(k) Y)1 k = si > IA2l/l!vl.

Proof: If y or A., are empty then the lemma is trivial to prove. Thus, we will assume that

both ; and Ay are not empty. Since the purpose of the proof is to lower bound

i E[minfk > 0: c(Xk) !5 7) Xo = s), without loss of generality we will assume that all states in

'4
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have cost exactly equal to y. We have assumed that T > 0 and R is a symmetric transition proba-

bility matrix over S such that for all i. j e S. there is an integer k and a sequence

i = i(1), i(2) ...... i(k) =j of states in S such that R,1h), l).>O for all h such that 0 < h S k-I,

and, therefore, process (Xk: k > 0) has the limiting distribution (n,: s c S), called the Gibbs distri-

- bution. where i, exp(-c(s)/T)/I exp(-c(o)rT). Then
OE S

ii  s E[min(k 1: 5(k E ) 5(=S = ( ,)-

* Thus, there is a state 9 c- such that

.. _ (: ' S E[min(k Z 1: Xki, e ) 15o 91.

*Since

E[minfk-.: Xk ,} 15o = = + R1,exp(-[c(s)-c(§)IfT)E[min(k > 1: 5(k E S} 15o = s]

and 7 RI, _5 1. there must exist a state se S-; such that

exp(-[c(s)--c(§)]/r)E[min{k > 1: Xk e 1 jX0 = s] + 1 ( O1

The previous inequality implies

. -:) exp(-c(ol)M

exp(-[c(s)-c(§)]nTE[min{k > 1: k E S) 2 t o- - r=
'-" " ;, I~exp(-y/T)

:hich in tum implies

- exp(-[c(o) - yriT)
E[min{k 1 5(k E ]y) IXo = s] > s-,

,,,Iexp(-[c(s) - c(§)]IT)

> iAiexp(-fY0 - yl,

i, Ixp(-c(s) - c(§)i/T)

'V"!
0-4

,, P-. . . o .. .T-.-.- -. - .. . .- - ,-,- ,-, - , .. .,- . . -, . . - . , . - ,- . - .. , ' , . • • -, . ",
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? exp(([c(s) - c(s)] - [y. - ifI]r)lA/l 71

and we are done.

Proof of Theorem 2.4.1: Let X = J and )L = L2J. Then A(OHXI) is a graph with at

most n nodes and maximum node degree at most d*. For positive integer k, let Sk be the set of all

matchings of A(H)-L) of size IHI - k. From Lemma 2.4.1, ISk+II (2 -k) for all k S
ISki k+l

Thus, for all k LJ.we have

Then ISk I > _- -

ISkI Ln k-Unj~ L~j+ l -

frSince we have assumed that 8 < (3 < n Q is greater than one, and, thus, the right side of (2.4.2)- 4'

ISOis finite and is equal to IS _I(Q-1)- Hence, it folows that

., ,"".J~

4'4

isfnt n seul oI J1IQ01 Hne tflosta

1L
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?i SneJ I __-_- 1.~

SQ-1 =(2.4.3)

Let G ; A(XH, X). Lemma 2.4.2 and (2.4.3) imply that, for any T > 0 and any transition proba-

bility matrix R e R(G),
411

LAJ L4
-Gmax E[min(k• Ix Gy-)I > IHI - L'J1 I xSGY = MI Z 1. (2.4.4)#''.Me M'(G) nl

L.,- J+I

Since (1 - -)m(A(XH, X))= (1 - [-)IHI ' HI- -J Inequality (2.4.4) implies that, for any

T > 0 and any transition probability matrix R e R(G),

n~ L4J

max E~mink: IXR G.RIT) > (l-3-1 )m(G)) I = 
G M- T) = 2-! 5 - - 1,

MeM'(G) nJ+ I

which implies the theorem.

~0

'-

2.5. Speculations

We believe that Theorem 2.2.1 is true for constants a, and aY2 much larger than what we pro-,

vided in the proof and that ER is significantly smaller than the upper bound given in Theorem
a ..

2.3.1. Moreover, we conjecture that for 0 < r < 1, the average time needed for the controlled

*processes described in Section 2.2 to reach a matching having cardinality at least the maximum

possible minus lvlt is not upper bounded by a polynomial in IVI for some sequence of graphs.

.4We believe that graph A(XH. ?.L) of ection 2.4 and the techniques of Section 2.2 could be used to

prove this conjecture.

9 .o

...J.+:., ;
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S The upper bound on ER given in Theorem 2.3.1 is valid for all graphs with a specified

number of nodes and maximum node degree value. In the next chapter, we try to bound ER when

we restrict our attention to graphs G that are "typical" in some sense.

I Our methods of analyzing simulated annealing, like the deterministic methods known for

solving the maximum matching problem, do not easily carry over to "industrial strength" variations
0*

- - of the problem or to other problems. More work will be needed to evaluate the average time com-

. plexity of simulated annealing and other search heuristics for a wide range of problems.

':1

Too

% t .. **

U



40

CHAPTER 3

MATCHING PROBLEM: AVERAGE PERFORMANCE FOR TYPICAL GRAPHS

3.1. Introduction

In Theorem 2.3.1. we presented an upper bound on the average amount of time the basic

simulated annealing algorithm of Subsection 2.2.1 takes to find a matching with size at least a frac-

tion I - p- t of the maximum matching. If 3 = IV 1/2 then the upper bound is

61V l(2d*)v - . (3.1 1)

Expression (3. 1. 1) is an upper bound on the average amount of time the algorithm takes to find a

maximum matching of a graph (V,E) with maximum node degree d*. Therefore, if we exclude

graphs with no edges then (3. 1.1) is exponential in IV!. However, (3.1.1) is a bound applying to

all graphs of a specified number of nodes and value of maximum node degree.

Our objective of this chapter is to find an upper bound on the average time complexity of

simulated annealing for the matching problem for a "typical" graph. We will make this objective

precise after the following definitions. Let m be an increasing positive integer valued function of

n. Typically, m(n) = Lcn+J where 8 and c are constants. In this chapter, we will use m as a func-

ton only of n, so we write m for m(n). Let G(nm) be the set of all graphs with node set ( 1. 2,..

n) and m edges. Suppose An is the subset of all graphs in G(n.m) with some property Q, and

I A, I/IG(n.m)1-41 as n-o-. Then we say that almost every graph has property Q. Our aim is to

find a small function g such that for almost every graph the average time it takes the simulated

annealing algorithm of Subsection 2.1.2 to find a maximum matching, if the graph has n nodes, is

at most g(n). In this sense, g(n) upper bounds the average time complexity of simulated anncaling

for the matching problem for a "typical" graph with n nodes and m edges.

Ua
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Since we do not know of an exact analytical method to find a small function g, we use

heunstic approximations of the annealing process to estimate one. The approximations of the
'~p

annealing process and an estimate for a small g are presented in Section 3.2. The estimate is com-

pared with computer simulations in Section 3.3. and conclusions are given in Section 3.4.

N9h 3.2. Approximations and Estimates

We are interested in approximating two processes. The first is the annealing process

(Xk k > 0) of the basic simulated annealing algorithm of Subsection 2.1.2 for a "typical" graph in

G(n.m) and T, = T for all i > 0. Note that since the sequence of temperature values is not decmeas-

ng, (Xk: k e 0) is not. strictly speaking, an annealing process. We will approximate (Xk: k > 0)

by a process (Yk k Z 0) that also has a parameter T. We will then use (Yk: k > 0) to approximate

E[mtn(k: Xk is maximum) IXo = 0). (3.2.1)

,,hen the graph is a typical element of G(n,m). and to find a value of T so that (3.2.1) is small.

The second process we are interested in approximating is ()Ck : k L 0). which is the limit in

distnbution of the process (Xjk): k ? 0) as T-.O, where J(0) = 0 and J(k+l) = minfj a J(k):

X * Xjk)) for all k 0. The following is a procedure for simulating (Xk: k > 0). Let ko equal a

matching. Having selected &, k ..... Rk choose 41i1 as follows. If :kk is maximal then

!P1 choose an edge e at random from Xk, all such edges being equally likely, and let Xk+ t = Xk - e.

If Xk is not maximal then choose an edge e at random from the set of edges matchable relative to
%,,

Xk, all such edges being equally likely, and let Xki = Xk + e. Note that (Xk: k > 0) is not depen-

'd.. dent on a temperature parameter, and, by the theorem of Berge and Norman and Rabin [10,

Theorem 10.1], it will eventually visit a maximum matching.

We will approximate (Xk: k ? 0) by (Yk: k 0). which we define as the limit in distribution

as T-+0 of (XJ,t): k ? 0), where J'(0) = 0 and J'(k+l) = min(j > J'(k): Y *YJ.(k)) for all k 2 0.
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Then we will use (Yk: k > 0) to approximate

E[min(k > 0: 5(k is maximum) 1X0 = 0), (3.2.2)

when the graph is a "typical" element of G(n,m). We are interested in estimating (3.2.2) for two

reasons. First, in Section 3.3, how close (Yk: k 2 0) approximates (Xk: k Z 0) is determined by

*- comparing the estimate (3.2.2) with data from computer simulations. This will be an additional

check on how accurately (Yk: k > 0) approximates (Xk: k ? 0). Second, simulating (Xk: k > 0) is

an alternative to the simulated annealing algorithm for the matching problem, which at times may

be preferable. Hence, we are also interested in its time complexity.

This section is organized as follows. Process (Yk: k Z 0) is presented next. Using

.. (Yk: k Z 0), we give an estimate of a value of T that should make (3.2.1) small. Finally, we

present an estimate for (3.2.1) (resp., (3.2.2)) using (Yk: k Z 0) (resp., (Ytk: k Z 0)).

The state space of (Yk: k Z 0) is U f s(i,0), s(i,1), s(i,2), s(i,3)) and each state corresponds to

a rvoe of matching rather than a particular matching. State s(ij) corresponds to matchings of size i

that have their matchable edges configured in the following way: for j equal to, respectively, 0, 1,

" . or 3, the set of matchable edges is, respectively, empty, a single edge, a path of length three, or

two disjoint edges. The transition probability P[Y + = s(al,bl)Y-k = s(ao,bo)] approximates the

"typical" one-step transition probability of (Xk: k > 0) from an s(ao,bo)-type matching to an

s(a1,bl)-type matching. Note that an s(ij)-type matching does not exist for all i and j such that

0 o i 5 L-J and 0 < j 5 3. For example, all edges are matchable relative to a matching of size

zero, but, there are at most three edges that are matchable relative to an s(0,0)-, s(0,1)-, s(0,2)-, or

s(0.3)-type matching. These inconsistencies are due to the fact that process (Yk: k 2t 0) is based on

, some assumptions on G(n,m), T, and process (Xk: k > 0). We ignore these inconsistencies,

because process (Yk: k > 0) is relatively simple and it seems to do a fair job of approximating the

~1A
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behavior of (Xk: k 0).

We will now discuss three assumptions on G(n,m), T. and process (Xk: k > 0) that process

n(Yk: k 2!0) is based on. First, we assume that T exp(-IM is a small fraction. Under this assump-

tion if X0 is a matching that is not maximal then with high probability the next matching

(Xk: k > 0) visits will be a larger matching. We make this assumption because we are only

interested in values of T that make (3.2.1) small, and if T is large enough so that the long-term

drift of (Xk: k a 0) is not towards larger matchings then (3.2.1) will be large.

p -m 2m
U" Second, we assume that the average degree of the graph (- -) is small relative to n. For

n

. . the rest of this chapter we will use d for the average degree. We are most interested in the case

when - is small, because for a fixed value of n, the smaller d is the more time it takes (Xk: k Z 0)
n

to reach a maximum matching.
U,

. ' - *Third, suppose that (Xk: k > 0) typically occupies matchings of size i. Then we assume that

n - 2i is small. The value n - 2i is an estimate of the number of exposed nodes relative to a

matching of size i. The estimate will be accurate if m > cnlogn and c > -L, for then maximum

. ... .

matchings typically have cardinality near - (see [17]). Our assumption that n - 2i is small should
2

be consistent with the assumption that exp(-1/-T and - are small, because then we would expect
2 n

. ".- that for a large fraction of the time, before reaching a maximum matching, (Xk: k 0) will be in

t , matchings that have size that are near maximum.

Before describing (Yk: k > 0) in more detail we will simplify the notation by letting

p(a1,bj;a,b 0) = P[Yk1i = s(ao,bo) lIk = s(al,bl)] and q = n - 2i. A schematic description of
.

(Yk: k - 0) is given in Figure 3.2.1. Each box in the figure corresponds to the state labeled on its

left or upper left comer. Inside each box is the configuration of matchable edges for that state,

"Ud

, ps ', K .Y > .. '/--- ,* ~ .- ;UU..~.-GU~.
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sCO. 0)SC2. 1 )O-0 s (2, 2)_ (.3

0 0 0 0

0, 0- 0(-12 0~-1

0-0

0o 0 0

o 0 0
s: H'2J 0) ) (Ln/2J .2) s([1/21,3)

Figure 3.2.1. State diagram Of Ohe (yk: k 2: 0).
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where 0 means no matchable edges. An arrow from a box corresponding to state s(ao,bo) to a box

corresponding to s(al,b l) means the transition probability from s(ao,bo) to s(al,b 1) is positive. We

do not indicate by arrows the positive transition probability of a state to itself. The transition pro-

I bability values are presented in Figure 3.2.2. We will ignore states s(0,0), s(L[2.j,2), and s(L J.2),
2 2

because there are no transitions out of these states with strictly positive probability.

Next we will give heuristic reasons for our choice of the states and transition probabilities of

' L (Yk: k 0). Note that all transition probabilities of (Yk: k 2t 0) that correspond to increasing the

,.. ~size of the matching are chosen to be consistent with the configuration of matchable edges of the

state of which it came from. For example, there are three matchable edges relative to an s(i,2)-

.- .type matching. Matching one of these edges gives you an s(i+1,0)-type matching and matching

either one of the other two edges gives you an s(i+l,1)-type matching. Hence, p(i,2;i+l,0) = m-

and p(i,2;i+l,1) = 2m- 1. We assume exp(-lI/T)- is small and, therefore, if (Xk: k 0) is in an
2

s(i.2)- or s(i,3)-type matching then with high probability the next matching it visits will be a larger
Nn

one. Thus, for all i :_ L-., we ignore the possibility of a transition from either states s(i,2) or

s(i,3) that corresponds to decreasing the matching size.

We will now discuss the transitions out of s(i,0), which is the state corresponding to maximal

matchings of size i. In this discussion, we will suppose M is a "typical" maximal matching of size

S-., i. We assume that for each e e M the end nodes of e do not have a common neighbor, which is

consistent with the assumption that -1 is small. Since M is maximal, for all edges e e M, all

matchable edges relative to M-e share a node in common with e. Thus, we can partition M into

two subsets A and B, where subset A contains all edges e such that each node of e has at least one

neighbor that is exposed relative to M, and subset B contains all edges e such that at most one

node of e has a neighbor that is exposed relative to M.

0

C,, . - o , - . . - . - , " ,% - ," " . . .' . . . . ' . " . . . . . , . , , 4 ,. " ,
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-I

For all i such that 1 < i n
2

p(i,0;i- 1,2) = min { 1 ,((n-2i)(d- 1)/n)2 ) i exp(- IT)
m

p(i,O;i-l,1) = max(0,1-((n-2i)(d-1)/n)
2}i exp(-1/T)

m

p(i,1;i-1,2) = min{2(d-1),i, exp(-l/T)
m

and

p(i,1;i-1,3) - max(O,i-2(d-1))exp( - 1/T)

[.?..::.For all i such that 0 5 i< L5 1-,

~~p(i,2;i+l,0) 1

m

2
p.i,2i-1," -'

"-- p(i,3;i+1,1) - 2

p(i,3;i+1,1)_2
m

All other transition probabilities are zero, with the exception of transition probabilities from a state
to itself.

Figure 32.2. Transition probabilities of (Yk: k > 0).

-" .5"
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W Our estimate of the size of A and our characterization of the types of "typical" edges in sets

A and B are based on the following argument. Let e = [i, j] be a "typical" edge of M. We

assume that the degree of each node of e is d. We also assume that for each neighboring node v

of i or j that is neither i nor j, the probability of v being exposed relative to M is R. Combining
dn

these assumptions on e and the assumption that q and - are small we have the following approxi-
n

mations:

P[The nodes of e have no exposed neighbors]

S)2(d1) 1 2(d- 1)
n n (3.2.3)

P[Each node of e has exactly one exposed neighbor]

((d - 1)_%(1 - 2)2 ((d - 1)q)2 ,  (3.2.4), n n n

and

v .' ?" P[Each node of e has at least one exposed neighbor]

(1 - (1 = ((d - 1)2)2.n  (3.2.5)
n n

Approximations (3.2.3) and (3.2.5) and the assumption that q and d are small imply that
n

most of the edges e of B are such that e is the only matchable edge relative to M - e. Hence, if e

E B then M - e is likely to be of type s(i-l,1). Approximations (3.2.4) and (3.2.5) imply that

most of the edges e of A are such that the set of matchable edges relative to M-e is a path of

length three. Therefore, if e E A then M - e is likely to be of type s(i-1,2). Approximation

(3.2.5) implies that JAI is approximately (q(d-l)/n)2 1MI. Since B = M - A, we approximate IBI

:, "  by [1-(q(d-l)/n)2] IM 1. Based on these approximations, we let p(i,O;i-l,2) =

min{l,(q(d-l)/n)2}i exp(-lFF) and p(i,0;i-1,l) = max{0,1--(q(d-l)n)2iex-ln,

VU m m

1P --
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We will now discuss the transitions out of s(i,l), which is the state that corresponds to

matchings of size i that have exactly one matchable edge relative to it. For e = [u, v] 4 M, He is

the set of edges [u', v] in M such that u' or v' is adjacent to one of u or v. Let U, be the set of

all nodes such that there is a path of length at most four from v to a node of e. The following

>- assumption is consistent with the assumption that -. and q are small. We assume that the sub-
"., n

graph induced by U, is a tree, and all nodes in U€, except the nodes of e, are matched. Under

these assumptions, an edge e' r M is such that M-e' is an s(i-1,2)-type matching if and only if e e

He (see Figure 3.2.3 for an example of He under these assumptions). We expect that if e' e H

Sthen the set edges matchable relative to M - e' would be a path of length three. Since we assume

q and d are small, we also expect that most edges e' e M - He are such that the set of edges
n

r, e25Ye

A,,

Se3

ee", 1

VJ,

: , Figure 32.3. In this example, the matched edges are bold and He = {ei, e2, e3, e4 .
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matchable relative to M - e' are two disjoint edges. Therefore, we assume that if e' = M- H

then M - e' is an s(i-1,3)-type matching. Since IHCI is the sum of the degrees of the nodes of e

minus two, we approximate it with 2(d - 1). Based on these approximations, we let p(i,1;i-1,2) =

min[2(d-l).i exp(-1T and p(i,1;i-l,3) = maxfO,i-2(d-1)} exp(-1r).
m

We now turn to determining a value of T that will make (3.2.1) small. Let

D(j) = min{k: Yk = S0+1,0) or s(j-1,0)},

Ajj+ = P[YD~i) = s(j+1,0) I Yo = s0.0)],

and

Ajjl = P[YD(J) =s-1,O) I Yo= sO.0)] =l-Aji.

We will approximate (3.2.1) by

E(min{k 0: Vk -S(L-" J,0)1 I YO= s(0,1)J. (3.2.6)
2

whch is equal to

12 J-
D ED(j) IYo = s(jO)] . f l (AkJ-I/Akk+l)

j-2 I i- k-j+l

*-Lj"I-I "

+ E[D(1) IYo = s(1,0)] F l (Ak.k-/Akkl) + m, (3.2.7)
j-1 k-2

where IH (') = 1.
k-j+l

To prevent (3.2.7) from being exponential in n, we want T to be such that A for

.!5 L n J-1. Then (3.2.7) is at most

L.21J-t
re 3 7 E[Dj) Y(y=s(j,0)] + m. (3.2.8)

* ~It can be shown that if 2 < i :5 n hnA~.1 A 1 1 eul
2

N.,* It an.b -sown thatif*2,*<i.**,..-1*then*.,l/A'., equalr", .""."" " ' ' . ,' 7,''".'".
"

".;.-''. "'.""i.""""- ""- -"""".- -'''. -' -.%. * ' ' - € - ¢ - , ' : ' ' ' ' ''



so

(d-l)q 2 3+min {i-,2(d-l))exp(-IT)

{ )- ]n - (-exp(- +in-' < ( ~(d-1)Cn-2i))2dlex(1T3
2

d-1 3'
Thus, if T satisfies 2 exp(-1 < I then A,-/A, for i j Athu we

(d-) 3 2 2

want T to satisfy n 1exp(-1T-I< I we do not want T to be too small, otherwise

(d-1) 3-

E[D(i) IYo = s(i,O)] will become very large. Hence, a value of T that makes (3.2.7) small is one

where

exp(-1T) = c d

and c is a constant < 1.5. If (Yk: k _> 0) is an accurate approximation of (Xk: k _ 0) then such a

value of T wi/ also make (3.2.1) small.

We now turn to evaluating E[D(i) IYo = s(i,0)]. The exact expression for E[D(i) Yo = s(i,0)]

is complicated, so we will approximate it with

'I 1.Smd-I 329

, exp(-I/T)min{ 1,(- (n-2i))2)i (3.2.9)
n

This is an accurate approximation if T is very small. Using Approximation (3.2.9), we get the fol-

:.1 lowing approximation for (3.2.8):

L2 J-1

4.5m exp(1/T) E +M.w2 rin(l,( d- (n_2i))2)i

5 (4.5m)exp(1'T) -: - +Lji- ) +rM
s -=2 i (.-- (n-2i))'L n

04a

,:.-,.-,,, -'.',, ,--.'. .. '--.,,-. .-.-.- .. - .':-: -. .. :-..'. .:.. . -'.-. -. , - .L-.?.,"-'., -"



n.- 2  2i2 41 +~ 1
-(45mexp1 f) og(n) (d--1) i=2 i(n-2i)2 +  

,, n2)

[I 12 rL26 I L-J-I
5 (4.5m)exp(I og(n) + n 1 +

" " - ( d) 2 
_2(n-4)) i_

(d:)"(-"2 46 L+i+ (n-2i)2 JJ
n [ 6

(45Nxp11 - ~n + (d-) i2
Sn6

(4.5m)exp(lI)(log(n) + 5 n
2 (d-1) 2

- 9 n2

= 9exp(lT)(2dnlog(n) + 5-). (3.2.0)
8 d (3.2.10)

Finally, if exp(-lIT) :51.5 (d 2-1 then Expression (3.2.10) is our estimate of (3.2.1). Note that
n

E[D(L2 = s(LJ-1),o)] -Lexp(1/) m : -ex1p(IT)-. Thus, if (Yk: k > 0) is2 2 12d_l)2 4

/3 ., a good approximation for (Xk: k > 0) and d = o((n/Iogn)0 5) then (Xk: k _> 0) will be such that for a

large portion of its time before it visits a maximum matching it will be in near maximum match-

ings. This is consistent with one of our assumptions used to define (Yk: k _> 0).

If c is a constant such that c < 1.5 and exp(-1M - c-1 2 , then (3.2.10) will be approxi-

mately

9 n31og(n) + 4' (3.2.11)
4c 8c d 3..1

Therefore, if (Yk: k > 0) is a good approximation of (Xk: k > 0), then (3.2.11) is an upper bound

on (3.2.1) for almc every graph.

We now turn to approximating (3.2.2). Recall that (Yk: k 2 0) is the limit in distribution of

(YJc,): k 2! 0) as T--*O, where ](0) = 0 and, for k > 0, J(k+1) = min{j > 1(k): Yj Yjc,)}. Let

'.:to = 0 and tk min (j _ 0: = s(k,0)). It is straightforward to show that

, A

@4



- S2

E[tk+1-tk[Y 0 = S(0,)] = 3max{( n )2,11+1. Then
(d-l)(n-2k)

-:', EImin > 0: = (L l o j,0))I =s(0,1) = 3 , [max(( )2,1)+1] + 1
i2I (d-l)(n-2i)

3 n2 (3.2.12)

2 _ 1+
)2

Finally, we will use (3.2.12) as our approximation for (3.2.2). If (Yk: k > 0) is a good approxima-

tion of (Xk: k 0) then (3.2.12) is an upper bound on (3.2.2) for almost every graph. Note that
E~tt~j3( n

E[t - t 2, Y o = s(0,1)] 1 4 ) + 1. If our approximations are correct then (Xk: k 0)
L-1JL. E 1j- 4 (d-1)

• .will spend a large portion of its time in near maximum matchings before finding a maximum

. matching.

3.3. Experimental Results

In this section, we will experimentally evaluate how well (Yk: k > 0) approximates

(Xk: k '2 0) and how well ('k: k > 0) approximates (5(k: k >- 0). First, we will focus on evaluating

the accuracy of (fk: k > 0). We check the accuracy of ('k: k > 0) by using it to predict the sam-

ple means and sample standard deviations of = min(j: kj is maximum} and 't = m. -in _, where

m" is the size of the largest matching and Ek = min(j: I kj =k). Recall that G(n,m) is the set of all

graphs with node set { 1, 2, . . . ,n and m edges. If (Yk: k > 0) is an accurate approximation of

(Xk: k 0 0) then for most graphs in G(nm) the mean of ) will be (3.2.12) and the mean of't will

be approximately E[t t IYo = s(O,1)], which is approximately !(n)2 if n is even.
1 J L1J- 4 (d-1)

We collected data from simulations of (Xk: k > 0) as follows. For each 8 E (0, 0.25. 0.5,

0.75. 1.01, we let m = Lcon ' . where qo = 80(32)-8), and we considered five values of n: 32.

'4, 128, 256, and 512. For each (8.n) pair, we randomly and without bias selected one hundred
1

,;;- .:,-.---"" .;_':".;:.'.'.: <z'..:..'..' -.-.- :- -:-.-'.- -.- :- -.-. . - -.- ' -+ -- ;_:-.,'-,., ; , ,-.5 ,
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graphs from G(n,m) with replacement. For each graph, we simulated (Xk: k 0) once. From

these one hundred simulations we computed the sample mean mto) and standard deviation aCJ) of

J, and we computed the sample mean m(t) and standard deviation a(t) of It. Note that m(J) (resp.,

m(t)) is an estimate of the mean of (3.2.2) (resp., E[ltI Xo = 0]) over all graphs of G(nm). The

sample means and standard deviations are given in the tables in Figure 3.3.1. These tables also

contain the values of (3.2.12), which are listed under a(J), and the values of 3) 2 which are
4 (d-l)

listed under a(t).

Note that the m(t) is at least a half of m(J), which is consistent with our prediction that

(Xk: k _> 0) will spend a large portion of its time in near maximum matchings.

We estimate the rate at which m@t) and m(J) grow with n using the following procedure.

First, for each 8, we find an argument (cCt),3('t)) of

min " (ogt(n)-log(ean0))Z,
GO[ n-32,64,128,256,512

where t(n) = m(t) for the graphs with n nodes. In this sense, for the value of 8, eO)nP@) is the

"best-fit" curve to values of m(t) as a function of n. Similarly, we find a pair (a(J),(J)) for

values of m(J). The values of (a(t),3('t)) and (c(J),3(J)) are presented in Table 3.3.1. If

(Yk: k 0) is an accurate estimate of (Xk: k 2t 0) we would expect P(t) to be approximately equal

to 2(1-4) and 3(3) to be approximately equal to max(2-28,1). We also list the values of

max{2-28,1) (resp., 2(1-)) under 13(J) (resp., P(xc*)).

Table 3.3.1 shows that our predictions, (3.2.12) and 1'"n "2 tend to be more accurate for

sparse graphs. This is not surprising, since our approximations were based on the assumption of a

sparse graph. In addition, our predictions seem to be asymptotic upper bounds of the sample

means.

04
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6 =0.00
n M I mO) o0) aO) m() o) a)
32 1 80 2.02e402 2.93e+02 1.44e+02 1.61e+02 2.77e+02 4.80e+01
64 160 8.93e02 6.64e+02 4.&0e402 6.67e-02 6.21e+02 1.92ei,02

,1 128 320 1 2.90e+03 2.41e.03 1.73e+03 2.01e+03 2.23e+03 7.68e.02
256 640 1.24e+04 1.06e4-04 6.53e03 8.37e+03 I.Ole+04 3.07e,03
512 I 1280 4.00e(04 2.96e.04 2.53e+04 2.49e+0 2.83e+04 1.23e..04

I.,

_____ ____ 8-025 _ _ _ _ _

_____n m M(t) o(0) aO) m(T) O (T) a(t)
32 80 2.02e+02 2.93e+02 144 I 6e+02 2.77e+02 4.80e+01
64 190 5 5.51e+02 4

.65e+02 3.48e.{02 4.07e.02 4.23e.02 1.26e+02 1
5 28 2 520 8.3+3i.~~a jS5e..3 S3c0 .3i18 452 1.24e+03 8.17e+02 8.61e+02 8.04e+.02 7.54e,02 3.34e.02

.56 1076 [ 3.19e+03 2.06e+03 2.18e.03 2.18e+03 2.04e+03 8.96e.02 'S512 25 60 8.33e+03 5.51e+03 5.62t-,03 5.52e403 I5.36e+03 I2.43e ,.0

_ _ _ _ __ 6=0.50 _

n m I m() 00) a() m(t) a(t) a
32 80 2.02e-02 2,93e-€02 1.44e+02 1.61e.02 2.77eoD2 4.80.01i
6-% 226 1 3.24e+02 2 .35e+02 2.63e+02 2.3:e+02 2.17e+02 i 8.36e.-01

128 640 5.98e.02 5.17e+02 4.95e+02 3.87e+02 1 5.04e+02 1.52e.02

256 1810 i1.06e+03 8.48e+02 -953e+02 6.68e+02 8.09e+,2 2.85e+02

512 5120 1.77e+3 9 ,49e.02 L 1.86e.03 1.03e+03 j 9.52e02 5.45e-02 i

= 0.75 _

ni M Md) ) ad) i MM ~ CRT) A(T)
32 80 2.02e.02 2.93e-02 1 1.44e 02 T 1.61e.02 2.77e.02 4.80c.+01

64 269 2.35e*02 1.68e+02 I 2.08e02 1.63e+02 1 1.61e.02 5.60e+01
1'8 905 2.9 +02 I 1.68e.02 3.34e.02 1.81e+02 1 l.63e.-02 7.12e+01 i
256 3044 3.80e.02 1.98e42 5.73e.02 1 1.79e+02 1.92e.i.02 9.47e-01
512 10240 681e+02 3.22e+02 1.03e+03 I 3.15e02 3.19e.02 I 1.29e-02

-.

8 S= 1.00

n m m]u) o ]) Ca]) ,! m) ao') i MT)

32 90 2.02e.02 2.93e.)2 1 I.44e . 1.61e.02 2,77e-02 4 80e..OI
-,,4 320 1.3 5e.02 7

.83e.01I 1"12e-,2r 8 22e-4I 7.23e+01 3 9c-.01
1 28 i280 I -.'k+02 6.56e4.O 2.60e.02 . 683e-.0I 6,25e0I 3 4Oe+0
2 120 I3(.e.2 1 03e+02 4 49e*02 QOlc-1 9 78e-01 3 23c.01

r". "4i, .52c+02 "09e4)1 8 31e.(2 '7 50e.01 6 76e+,01 3 i.I4)1

Figure 3.3.1. Tables of sample means m(t) and m(); sample standard deviation oI) and o(lJ)
and our estmate a(t) (resp.. a.) of T (resp.. 1). based on the approximation (Y4: k 0 of

Nk, k 0 b Thc graphs considered have n nodes and m =Lcn' 4j edges.

I,;
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Table 3.3.1. Function e()npet) of n is the best-fit curve of m t) (resp.. m(J)) as a function of n.
The value of P(') (resp., 3J')) is the estimate of 131t) (resp.. .J)) based on the approximation
(Yk: k 0) of (Xk: k a 0).

1.

o-S ct() 13(j) 000J') a(t) Ot) 3(r')
0.00 -1.22 1.91 2.00 -1.16 1.82 2.00
0.25 0.73 1.33 1.50 0.69 1.26 1.50
0.50 2.52 0.80 1.00 2.64 0.69 1.00
0.75 3.75 0.42 1.00 4.25 0.21 0.50

.. 1.00 4.15 0.24 1.00 5.51 -0.21 0.00

In Figure 3.3.2, we have three graphs, corresponding to 5 = 0, 0.5, 1.0. In each graph, we

plot m(J), ea(nO0), and (3.2.12) versus n corresponding to the particular value of 5 for that graph.

In Fgure 3.3.3, we plot three graphs of m(t), e"(1)nPt1), and "3.(,'72"L.,..) versus n for equal to 0.
4 (d-) o vs n

0.5. 1.0. In these graphs, the best-fit curves approximate the sample mean data fairly accurately,

except for the curve approximating m(J) when 8 = 0. These graphs also indicate that (3.2.12)

(resp., -( n )2) is an asymptotic upper bound on m(J) (resp., m("t)).
k" 4 (d-1)

Next we will determine how accurately (Yk: k 0) approximates (Xk: k 2 0) when exp(-liT)

• " 3 (d-lD
is approximately 4 We check the accuracy Of (Yk: k > 0) by using it to predict the sample

means and the sample standard deviations of I = min k: Xk is maximum). If (Yk: k 0) is an

accurate approximation of (Xk: k 2! 0). then for most graphs in G(n.m) the mean of I will be

bounded above by (3.2.10). which is approximately 3n3logn + 7.5-.
d2

% '
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Figure 33.2. Graphs of mr() (= "Data'), e'a'n"Y (= "Best-Fit Curve"), and (3.2.12) (= "Approxi-
%: maton") versus n, for 6 = 0, 0.5, and 1.0.
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For the values of n we considered, I can be quite large, because the value of T we used was

so small that for a large portion of the time (Xk: k _> 0) would be sitting in maximal matchings.

To be more computationally efficient in estimating the mean of I we do the following. First, set a

register I to zero. Then simulate the process (XJ(k): k > 0), where J(0) = 0 and

J(k+l) = min(j > J(k):Xj * Xj0). For every value of k > 0, we increment i by m

where Yk is the number of edges that are matchable relative to Xjk). When (Xj(k): k 0) reaches a

maximum matching we stop the simulation and I is our estimate ofT.

We computed sample means of I in the same way we computed sample means of j and It,

i.e., for each value of n and 8, 100 graphs were randomly selected from G(nm), and, for each

graph, a simulation of (Xj(k): k -0) was done and statistics wer taken. The sample mean m()

and the sample standard deviation o(i) of I are given in the tables in Figure 3.3.4. Note that ma)

is an estimate of the mean of (3.2.1) over all graphs of G(n,m). Also listed in the tables, under

a(i), is the value of 3n 3 ogn + 7.5-2. We also compute the pair (ct(i,)3(i)) for the best-fit curve
d2

earbn db of the values of m(I) as a function of n. The (c(xi),3)) values are given in Table 3.3.2.

If (Yk: k 0) is an accurate approximation of (Xk: k > 0) then P(i) should be approximately

max{3,4-25}. Included in Table 3.3.2 are the values of max{3,4-28, which are listed under

W3(). Just as in the analysis of the rate of growth of J and T, our predictions for I tend to be more

accurate for sparse graphs.

Note that 3(I) - 13O) is approximately 2 for small values of 8 (13(i) - 3(J) = 2.1, 1.9, 1.9,

1.7, and 1.4 for 6 equal to 0, 0.25, 0.50, 0.75, and 1.0, respectively). To see why this is so,

.observe that our choice of T is small so that the process (Xjm): k t 0) behaves like the process

"X,: k > 0). Therefore, the sample mean of I should be approximately the sample mean of ) times

-" the average value of J(k+l) - 1(k) over k such that 0 < k < k" and J(V*) =1. Since T is small, this
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_________ __________8-0.00 _ _____ ______

32 80 1.86e+05 2.17e+05 6.55e.05

64 160 2.78e+06 2.96e+06 8.30e+06
,,128 320 5.04e+07 4.02e+07 1.11e+08

256 640 6.34e.08 4.68e+08 1.57e409
512 1280 1.20e+10 1.30E,,10 2.31e+10

.- _ ___ _ I=0.25
I m m(I) a(b_
32 80 1.86e+05 2.17e+05 6.55e,05
64 190 1.96e+06 1.82e-06 6.84e+06

1' 128 452 1.77e+07 1.40ei.0 7,09e+07
256 1076 1.67e+08 1.13e+08 7.35e.08
512 2560 1.71e,09 1.27e.09 7.67e.09

,

A G fi8=0.50
' "n M mj am o) (

'* 32 80 1.86e+05 2.17e+05 6.55e+05

64 226 1.17e4.06 9.31e405 5.79c+06
128 640 7.70e.06 6.57e+06 5.07e+07
256 1810 4.25e.07 3.18+07 4.40e+08

--" -- 512 5120 3.. 3e. 08 2.51le,+08 3.80,+09

8 = 0.75
n_ m 1 Md) 001)a)
32 go______ 1.86e+05 2.17e+05 6.55e+05

__,___4 269 6.77e+05 5.30e+05 5.05e.06
128 905 2.80e.06 2.OOe+06 4.06e+07

____256 3044 1.32e+07 9.21e+06 3.36e+08
"- 512 10240 7.27e+07 5.10e.07 2.83e4-09

________ __________ ~ 8 81.00 _______ _____

n m m(T) 0(0) a4)
32 80 1.86e+05 2.17e+05 6.55e+05
64 320 4.08e+05 3.24e+05 4.53e.06

128 1280 1.24e+06 1.ooe+06 3.56e+07
256 5120 4.77e+06 3.72e,06 2.99e+08
512 20480 1.67e+07 1. 16e.07 2.59e+09

Figure 3.3.4. Tables of sample mean m(l); sample standard deviation o(]); and our estimate a(l) of
1, based on approximation (Yk: k _ 0) of (Xk: k 2! 0). The graphs considered have n nodes and m
= Lcon 1+EJ edges.

% .. w-',,
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Table 3.3.2. Function ea(INVI) of n is the best-fit curve of m(i) as a function of n. The value of
PI() is the estimate of 3()based on the approximation (k: k t 0) Of (Xk: k Z 0).

________ad) Pd)______

0.00_______ -1.67 3.98 4.00

0.25 0.81 3.27 3.50
0.50 2.83 2.68 3.00
0.75 4.55 2.17 2.50
1.00 6.20 1.65 2.00

averagec will be roughly the average amnount of time (Xk: k 2! 0) takes to leave a maxima] matching

that has size proportional to n. This average time is approximately m2n2. Then
nexp(-1,T 3

Pd() - P3) should equal to 2.

In Figure 3.3.5, we plot three graphs of m&I) e 1 nO(, and 3n logn + 7.5.. versus n for

d2

equal to 0, 0.5, and 1.0. These graphs indicate that the best-fit curves are accurate approximations

4
of the sample mean versus n. From these graphs it also seems that 3n logn + 7.5-a is an asyp

totic upper bound for m(i).

We conclude this section with some final remarks. Our experiments show that the process

(Yk: k 0) is a reasonable approximation Of (Xk: k 0), and if the graphs are sparse then

(Yk: k 0) is an accurate approximation Of (Xk: k 0). This is not surprising, since one of our

undcrlvin g assumptions used to define (Yk: k : 0) is that the graph is sparse. Note that

V. (Yk: k 0) leads to estimates that seem to be asymptotic upper bounds on the average amount of
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Figure 3.3.5. Graphs of m(i) (= "Data"), e~no(= "Best-Fit Curve"), and 3n3logn + 7.5- (=

"Approximation") versus n, for 8 0, 0.5. and 1.0.
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time (Xk: k > 0) and (Xk: k >- 0) take to find a maximum matching. If the estimates are actual

asymptotic upper bounds then for almost every graph (3.2.11) is an upper bound for (3.2.1) if c :5

1.5. Note that if d is bounded below by one then (3.2.11) is O(n4). Also note that the sample

mean of t is at least half the sample mean of . This is experimental evidence which helps to jus-

tify another of our assumptions used in defining (Yk: k 2 0): the number of exposed nodes is

small.

.. -, 3.4. Conclusions

9 In the previous chapter, we presented results which showed that solving the matching prob-

" lem by the basic simulated annealing algorithm of Section 2.1.2 takes average time that is

:exponential in the size of the instance. In addition, we also showed that to find a near maximum

matching only takes average time that is polynomial in the size of the instance. In this chapter, we

*. found an estimate (3.2.10) of a small upper bound on the average amount of time the basic simu-

'. lated annealing algorithm takes to find a maximum matching for typical graphs with n nodes and m

- . edges. If m _ n then (3.2.10) is O(n 4). We checked this estimate with data from simulations and it

seems that this estimate is an asymptotic upper bound.

An important reason why we were able to analyze the performance of simulated annealing for

the matching problem on "typical" graphs was that we were able to approximate the annealing pro-

* *-. cess (Xk: k _ 0) by a process (Yk: k _ 0) that was quite homogeneous. In Section 4.2, we present

a method of generating homogeneous, easy-to-analyze annealing processes.

.V

, .
..
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CHAPTER 4

THE TEMPLATE METHOD, THE THRESHOLD RANDOM SEARCH ALGORITHM,
.',. AND THE NONMONOTONICITY OF OPTIMAL TEMPERATURE SCHEDULES

4.1. Introduction

In this chapter, a collection of miscellaneous results is presented. In Section 4.2, we give a

simple technique, called the template method, that produces easy-to-analyze annealing processes.

A random search algorithm, which we refer to as the threshold random search algorithm is

presented in Section 4.3. The algorithm is a generalization of simulated annealing. In Section 4.4.

sets of conditions are given under which no monotone decreasing temperature schedule is optimal.
..1

. 4.2. The Template Method

In Chapters 2 and 3, bounds and estimates on the average amount of time simulated anneal-

ing takes to solve the matching problem were derived. However, we do not know of any other

nontrivial combinatorial optimization problems amenable to such analysis. One of the reasons why
I

simulated annealing applied to solving the matching problem could be analyzed is that there is a

great deal of homogeneity in the annealing process.

In this section, a simple method we call the template method will be given that produces

annealing processes that have a great deal of homogeneity and, as a result, are easy to analyze.

The annealing processes produced by the template method are homogeneous so that the states can

be classified into a relatively small number of types of states. In addition, for any state s and type

,x, the transition probability from s to some state of type a that has cost 5 larger than the cost of s

is dependent only on a, 5, the type of s, and the temperature schedule. Our hope is that the use of

this method will produce interesting annealing processes that will help us to better understand the

S,.simulated annealing heuristic. We will begin by presenting this method and then give three exam-

'.1



64

ples of its use.
A,J

For the template method, we need a finite (preferably small) set So of state types, a set Ac of

real numbers (corresponding to changes in cost of the states), and a transition probability matrix R'

from states in So to states in S~xA = {(s,8): sES °, A). We will also require the following con-

dition on R3. Let QM be the probability transition matrix over S0 such that

I t R.( 1 .,)exp(-max (0,8}/T)
Sif s s'

I -EQ.., if s= S'.

" We assume that for each T > 0, the Markov chain, which has states So and transition probability

matrix QMTh is irreducible and, therefore, ergodic. Then this Markov chain has a limiting distribu-

tion n. on S', which we can compute by solving the system of linear equations ltQ M = ' ).

We call the tnple (S0,Ac,R) the template system, and we call

i r[") Z R,. 5")exp(-max 0,})
Se 5 (S"6)e SXY~

the average drift of the template system (S",AR) for temperature T.

The following is one interpretation of the average drift of the template system. Let a set of

states S-, a cost c- on S , and a transition probability matrix R- over S- be defined as follows.

The set S- is the set of all finite sequences of the form [(so,5 0), (sl,51) . (sn, 5 )], where n _> 0,

and s, E So and 85 Ac for all i such that 0 !5 i < n. Let a E S-, and let (s,5) be the last pair in

the sequence a. Then say a is a state of type s. The cost c of a sequence

n

[(So,8) SI,5 ... (s,8n)] is zero if n = 0 and is j if n 2 1. The matrix R- is such that

s) if t is a state of type i and ax'=ct(j.8)
ci'c { .aS) otherwise,

where a I(j,5) is the sequence formed by appending (j,6) to the sequence cc.

@4%
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Let (X.: L-20) be an annealing process on the system (S-,cR-) and with a temperature

schedule that has all of its temperature values equal to T. Then it is easy to see that

lrn E[(c(X -c(Xo))/kJ is equal to the average drift of the template system for temperature T

Asimple example of a template system (SO.AC.Ro) is when S' (AB). AC -1.11, ad R0

is such that

[11/2 if i = A, j E (A, B), and 5=1

/2 if i = B, j = A. and I
R = 11/2 if i= B,ji=B, and 8 -1

0o otherwise

A state diagram of the systemn (Sc.R) is pantialy presented in Figure 4. 2.1 Each node

corresponds to a state of S and inside each node is the type of the state. The cost c- of the states

"- is indicated on the left of the figure. An arrow from a state to a state j indicates thatR =
0 2

Another example of a template system is given by ,A = (0,1,2), A'

-2x t and the matrix R, which is defined by

-1/4 if i=Of =,)E ((I 10A),(0}104),(,.106).(0.l10))
1 if i= fij=Oand 8= -2x1d =

.= I if i=2, j j=B and 8 = -2x1 6

-0 otherwise

.rZ. The average drift for the template systcm (SOAcRO) is

I0 2 '- OT + 10 l04T 06e-IO'I- + 1g-0'

4+ i'(T -io'/-T

Note that this average drift is not unimodal in T. The implication is that we cannot guarantee that

is.. an iterative descent method will find a value of T that will minimize the average dnift.

From. .- Fro this result we can also conclude that the average amount of time the following finite

state annealing process takes to find an optimal solution is not unimod as a function of
am

.

-

..
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ft

C

,t.

. . 0

B

-2

-3

Figure 4.2.1. A partial state diagram of (S-,c-.R-) when S' = (A. B), Ac = (-1. 1). and R° is
such that

1/2 ifi = A.j E {A. B},and 8= 1

"" 1/2 ifi=B.j=A.and8=1I R (.J-5) 112 if i= B, j B. and 8=-1

0 otherwise

"-=2jBan8-
'.p L '. .,'.2..' ,., .".--"....'....:..', i .'.'..-..:.-..'/ .'.-',- -: ,.,:., '2' ,.5',' '.-% '5
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temperature. Let S be the set of all pairs of integers (ij) such that i E (0, 1, 2) and j e (0, 1. .

, 10"'0). Let c((ij)) = j, and let R be a transition probability matrix R over S such that if

... -:(ilj 1) = (i~) then

1/4 if il = 0, j2 
< 10'00 and (i2,J2) {(Ojl+1O 4), (Ojl+1o 8)

1/4 if i = 0, J2 - 10'00 and (i2,j2) E ((1jl+l0 2 ), (2j,+10 6))

R(hXiJ0 = I if i= 1, j2 k 0. and (i2,jZ) = (0O,-2xl02)

1 if i1 = 2, j 2 k 0. and (iz,) = (Ol-2xl0 6)

0 otherwise,

and

I= 1 - R(iIJIXi2j ) .
('2 j2)*(' JI)

Then the annealing process (Xk: k k 0) on system (S, c, R) and with a temperature schedule that

has all of its values equal to T is such that E[min(k : c(Xk) is of minimum value) IXo = (0,1010))

is well approximated by 10100 divided by the magnitude of the average drift of the template sys-

tem (S,.Ac,R") with temperature T if this average drift is negative. Hence, E[min{k: c(Xk) is of

minimum value) 1Xo = (0,101°°)] is not a unimodal function of T, as stated earlier.

Before presenting the third and final example of a template system we give some useful

definitions. Suppose g is a set, c is a cost on S. and R is a transition probability matrix over S.

We say that state i is reachable at height E from state j if there is a sequence of states j = i(0),

i(l),.... i(p)= i such that Rk),(k ])> 0 forO<Sk < pand c(k))<E forO< k p. State sis

said to be a local minimum if no state s' with c(s") < c(s) is reachable from s at height c(s). We

define the depth of a local minimum s to be plus infinity if s is a global minimum. Otherwise, the

* depth of s is the smallest number E > 0. such that some state s', such that c(s') < c(s), can be

,* reached from s at height c(s) + E.

For our third example, let n. X. 0. and D be positive integers, where X < n + I and

U, 0 < 2 + n Let S"= (0.1.....D),A= (-4,1, and R be such that

*- -* A. zJ. !I.

*.* -**O *1~**-
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in if i < D and 0.8) = (i+1,1)
!I! ~ ~I/n if i > 0 and 0.8) =(-.l

.- Xin if i = 0 and 0.6) = (i,0)
0 1-(X+)/n if 0 < i < D, and 0,6) = (i,O)

R4. .8) = 1/n if i = D and (j0,) = (D,-I)

O/n if i = D and 0.8) = (D.1)
l-(2+0)/n if i = D and (j,8) = (D,0)
0 otherwise.

The average drift of the template system for the temperature T is

(exp(- .T)X)D
D-[-1 + exN-lq)O.D n (4.2.1)

The motivation for our third example is that the average drift is approximately inversely pro-

"* por'onal to the average amount of tme a firate state annealing process (Xk: k 0). on the follow-

ing system (S.c.R). takes to find a minimum valued solution. As we shall see, the average amount

5- of time Xk: k > 0) takes to find a minimum valued solution is dependent on the density of states,

density of states around local minima, and the depth of local minima of the annealing process.

Suppose D << 1010, and let S be the set of all quadruples of integers (i,j,d.k), where

.0 10 . 0<j <o', 0!5d<D, and 0<k< a  Let c be a cost function on S such that

C((iJ.k)) : i + d Let G be any graph with node set S and edge set E that has properties to be

specified later Let R be a symmetric transition probability matrix on S such that

ln if s * s' and [ss'] E E

R,,, 0 if s * s' and [s,s'] d E

I - YRj if s =s

We wkill now present the prperties of G. Set S can be partitioned into subsets T(ij) of

nodes for i and j such that 0 S i < 10"' and 0 j < 0', where T(ij) = {(ij.d.k): 0 < d < D and 0

_ k < &J The subgraph of G induced by subset T(i.j) is a completely-balanced, Xarv tree of

hcight D and has root (i.j.0,0), (see [18] for the definition of a tree, a root of a tree, a leaf of a

0

- 1.''. . . % - ''. . . . .. " .. ' % - .'- . .--. -*.%.. . . "-. ' 'S" .' V V.% % .. 5. ' J "' '* l. ". ' " " . .
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tree, and the distance between nodes on a tree). Also, for each i and j, all nodes (ij.d,k) are at

distance d away from root (i,j.0O). Note that c((ij,dk)) = d + c((i,j.0,0)). In Figure 4.2.2, an

example of a subgraph induced by T(ij) is given as well as the cost of the nodes For all i and j,

P., |the only nodes of T(ij) that have neighboring nodes not in T(i,j) are the leaves of the subgraph

induced by T(ij). Note that each node (ijD.k) is a leaf of the tree induced by subset T(ij) If i <

1010 (respectively, i = 101w°) then the nodes of the set ((i+lj,Dk). XQ-I) Sj < kj} (respectively,

0) are the only nodes that are neighbors of leaf (ij.Dk) such that each node is in a subset of T(ij)

".-*.i '" for some i > i and (ij) (i,.). Hence, the edges of E are such that the leaves of the tree induced

-. "by T(ij) are paired with the leaves of the tree induced by T(i+l j) where . is such that X(j-l) S j <

,.j Note that the graph

Cost of
node

I t: i+I

1, 1+1

Figure 4.2.2. The subgraph induced bh Th.j) A hcn D 2 and .=

J'.

-. ;- - :'<>

i " .': .","., .': : " " " .''.,. ".''.' ,. ..'',''.', , .-. " . " "- - "." , ". .''."". -'/.,,, " . ..''.'' '':; ',''-"".' 'p
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induced by contracting subset T(ij) into a node for each i, j is a completely balanced oary tree.

The edges between the induced trees T~ij) are illustrated in Figure 4.2.3.

Let (X,, k > 0) be the annealing process on system (S,cR) with temperature schedule

(Tk: k > 0) such that Tk = T. This implies that if (4.2.1) is negative then the average amount of

rime it tAes the annealing process to find a minimum, valued solution given X0 = (10U,,,,) is

approximatel) 10 10) divided by the magnitude of (4.2.1). as we stated earlier. Note that 0 is the

rate at wich the density of states Of (-Xk: k 0) is increasing with cost, D is the depth of all the

local minima, and k is the rate at which the density of states close to a local minima is increasing

*w w~h cost.

Figure 4.2.3. Pint of the graph G \when 0 2. The triangles are trees induced by subset-% T(I,1
.Arrows becen two trees mean that the leaves of the two trees are paired

J.%
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To keep (4.2.1) small one can set exp(-lM Then (4.2.1) becomes

4 (X: )D

2n D (4.2.2)

If 0 << X then (4.2.2) is approximately " n If 0 >> X then (4.2.2) is approximately - (AJ20)D

2n 2n

Hence, if >> X, the value of D strongly influences the average amount of time (Xk: k Z 0) takes

to find a minimum valued state. If 0 >> X then the average drift goes to zero exponentially as D

increases and, therefore, the average amount of time (Xk: k > 0) takes to find a minimum valued

state grows exponentially as D increases.

We believe that for typical annealing processes, states around local minima that have cost

much higher than the cost of the global minima corresponds to the situation where X > 0. If this is

true then the depth of local minima will not be so important to the drift of the annealing process

until the process is in a near optimal state.

4.3. The Threshold Random Search Algorithm

" -The threshold random search algonthm is used to solve combinatorial optimization problems:

min(c(s): s r S).

where S is a finite set of states and c is a cost function of S. Just as with simulated annealing, the

-* threshold random search algorithm requires a transition probability matrix R ever S. In addition, a

sequence of positive random variables (tk. k0), we call the threshold schedule, is needed. The

threshold random search algorithm generates a sequence of states (Xk: k >O) as follows. An initial

state X() is chosen from S. Given that Xk = s. a potential new state Yk is chosen from S with pro-

babhiti, distnbution PY = s' iX = s] = R,,,. Then we set

• , ~.. ... .. ... ...... . , . . ....... .. . . . .. .. . . . . .. . . .. .
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J'Yk if C(Yk) - c(Xk) < tk

Xkl = Xk otherwise.

If tk -Tilog(U ), where (Tk: k O) is a temperature schedule and (Uk: kO) is a sequence of

independent random variables distributed uniformly over the interval (0.1] then{RU~ exp(-max{O~coj) - c(i))llTk) if j
P[Xki- =jlXk= i I - F P[Xki = hXk = i] otherwise.

Thus, for this threshold schedule the threshold random search algorithm is equivalent to simulated

annealing.

Let (X"') k 0) be the process generated by the threshold random search algorithm with

threshold schedule t. It can be shown that there exists a threshold schedule that minimizes

Ermnik. c(X ' )) S y}]. More generally, as we shall see in the next corollary. it can be shown that

there exists a threshold schedule that minimizes F, where F(t) = E[.f"i(Xo.. X(')], for some
1-0

nonneganve functions P'). Note that if f')(xO. •Xd = l for l j such tha 0st o S ) then F(t) =
Eimink: ¢X ")< y}].

4.4 The corollary is implied by the next proposition and the following simple observation: for

everer', threshold schedule t, there is a sample path t' of t such that F(t) : F(t). Therefore, when
searh:ng for threshold schedules that minimize F we can restrict our attention to deterministic

, nc Vuhcut lass of generality we will ord consider deterministic threshold schedules (tk: k>O),

..here t, c- A. for all k > 0. and A = {c(j) - C(i): ij E S. R, > 0, and c(j) > c(i)JU.)(01. Let A be

S.-te "et of such knds of deterministic threshold schedules.

Propo ion 4 3 1 The functional F is minimized on A.

) )'.

) .. ,-', ,",', , , .'-"..... ,;..'. -:,.',el ,. ",..".. ". . .. .- ".",' ". "" .'''.•.. ,. .. ' .



73

Proof: It is straightforward to show that A is compact with respect to the distance metric

"((tk: k>O),(Sk: k-0)) = 2 rk-ski.
."O

We will now show that F is lower semicontinuous on A, which will complete the proof. Since A

F.- tis finite and E[f(k)(X*t), Xl') . X(t)] depends only on the first k + 1 elements of the sequence t,

E[ft<)(Xo1,Xt),...,X()I] is continuous on A. Thus, F is lower semicontinuous because it is the sum

of a collection of nonnegative continuous functions.

-43

Corollary 4.3.1. There is a deterministic threshold schedule that minimizes F.

0Remark: A simulated annealing algorithm will typically be outperformed by a threshold ran-

dom search algorithm with some deterministic threshold schedule. However, this is only of

theoretical interest, at this point, since the problem of finding optimal threshold schedules is

difficult.

4.4. The Nonrmonotonicity of Optimal Temperature Schedules

Most analytical studies of simulated annealing consider only monotone decreasing tempera-

ru re schedules. This is not surprising, since the purpose of the heuristic is to simulate an "anneal-

ing" process. In this section, we present sets of conditions under which no monotone decreasing

temperature schedule is optimal. We will focus on the basic simulated annealing algorithm in Sub-

section 2.1.2, which is used to solve the matching problem for a graph G. Let (S, c, R) be as in

Subsection 2.1.2, and let (XT: k 0) be the annealing process with temperature schedule T, where

X0' = 0. The following proposition contains the main results of this section.Propositioo4.osi1.on

Proposition 4.4.1: Suppose there is a maximal but not maximum matching M of G such that

I < m. Then

'O-. 5
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(a) there is a temperature schedule T that minimizes

':"E~minfk: [XMI>mj], (4.4.1)

and for every J t 0 there is temperature schedule T' that minimizes

P[ jXjn j>m]; (4.4.2)

(b) there is a monotone decreasing temperature schedule T that minimizes (4.4.1) if and only if

the infinity-valued temperature schedule (i.e., Tk = for all k) minimizes (4.4.1); and (c) there is

a J such that if J e J then there is no monotone decreasing temperature schedule that minimizes

*2 (4.4.2).

Remark: If G is a single path consisting of 2n+l nodes, m = 0.9n and n is sufficiently large,

then the infinity-valued temperature schedule does not minimize (4.4.1). To see this, observe that

"" by Theorem 2.3.1 there is a temperature schedule such that (4.4.1) is O(n'). Now suppose that T

is the infinity-valued temperature schedule. If a matching M of G is such that IMI > 0.75n, then

Sthe number of matchable edges relative to M is at most 0.5n. The implication is that the ratio of

I MI over the number of matchable edges relative to M is at least 0.6 and, hence, since T is the

infinity-valued temperature schedule, P[ IXmin{k> i: Xk; X, xIM I I X1=M] >- 0.6. Then it is straight-

*- forward to show that (4.4.1) grows exponentially with n. Therefore, for this graph G, none of the

optimal temperature schedules are monotone decreasing if n is large enough.

To prove the proposition we will use the next lemma, which may be interesting in its own

right. In the lemma we refer to a process (@M": k > 0), which is a more general form of the pro-

cess (XJKr: k >_ 0). We also refer to a functional FM of temperature schedule T, where F(T) =

.. ...... .. (. . . 5. ))j and f) is nonnegative. If X(TM: k > 0), is equal to (X0: k > 0) then

_ ;h (4.4.1) and (4.4.2) have the form of F(T).

L,'nmna 4 4 1 Let S be a set of states, let 't be a cost on that set, and let R be a transition

- rnax over S such that if R,j > 0 and Uj) > Z(i) then Uj) - Z(i)= 1. Let (X . k.2 0)

..... . ". .. % %........" .
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be the annealing process on (SZ, ft), with temperature schedule T. Let F(T) =

E[ fti)(~X).... , X'bi] where f{i) is nonnegative. Then there is a temperature schedule that

minimizes F and is monotone decreasing if and only if there is a temperature schedule (Tk: k _> 0)

p that minimizes F, is monotone decreasing, and TkE= {0, -*) for all k > 0.

, Remark: If T is a zero-infinity valued temperature schedule, the annealing process

kM k _ 0) then there is a random threshold search algorithm with a deterministic threshold

, schedule that can produce an equivalent process.

Proof of Lemma 4.4.1: The "if' part of the lemma is immediate. We now turn to prove the

"only if' part. Let T = (Tk: k >_ 0) be an optimal temperature schedule that is monotone decreas-

- ing. For each j _ -1, we will define a temperature schedule T ) = (Tk'): k.O) inductively as fol-

lows, Let T -') =T. For each j 2 0,

0 if k =j and Tk -) <
Tko) , 'Tk1) otherwise,

for allk _ 0.

We will now show that F(TI) = F(Ti'-), for j 0, by the following inductive argument.

Suppose T i-') minimizes F and Ti-1)<*o. Note that

j,
*S .9.

-; F(T(J-')) - [fi)oTil, o i rJ-) I Tj-) -" a, --~" 3]

, .9-

x -- a]P[Xjm((1 )) = al,

and the only terms in the expression that depend on Tj-') are P[X - al for

ct,3E S. Since i > 0 and c(j) > c(i) imply c(j) - c(i) = 1, P[ k a] equals one

or exp(-1I/'ITi-1). Hence, F(T - ' )) has the form A' + B'exp(-lr'l'j1n)), where A' an I B' are terms

not dependent on TP-1). Then it must be that B' -> 0. because T -l) minimizes F and T' 1r-)<M.

y J

%
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Therefore, F(l)) = A' < A' + B'exp(-l/T -1)) = F(T - ) for all j 0. By the optimality of T,

F(Tu) = F(T) for all j : 0.

Let T<- ) = (Tk(*): k.0) be such that T ) = , if T k = 0, and T " ) = 0, otherwise. Using an

argument similar to the one used in the proof of Proposition 4.3.1, one can show that F is lower

semicontinuous on the set of all temperature schedules under the distance metric

5(ts) = Z2-'exp(-1/Q) - exp(-1I/s-). Since T*) is the pointwise limit of T D and F(T) = F(TCP
i=O

- for all positive j, F(T( ")) = F(T). Thus, T ') is optimal, zero-infinity valued, and monotone

decreasing, and we are done.

Proof of Proposition 4.4.1. Part (a) follows from our argument in the proof of Lemma 4.4.1 that F

is lower semicontinuous on the set of all temperature schedules, and the fact that the set of all tern-

pcrature schedules is compact under the distance metric 5.

We now turn to prove part (b). The fact that R is symmetric and, for all i, j e S, there is a

sequence of matchings, i = i(1), i(l), . . . , i(k) = j, such that Rih)i~h+l) > 0 for all h such that 1 5 h

< k, implies that the infinity-valued temperature schedule leads to a finite value for F. Write M =

{e1,e 2 . .. 1e,, and let Mo = 0, and Mi = {e 1, e2,. . . ej for all i>0. Since X r = 0, for all i

such that l < i 5 n, RM_,Mi > 0, RMM.I > 0, and JMi-. I > IMi, then, for any temperature

schedule T, P[XPFe {MO,.... Mn] > 0 for all k > 0. Hence, F is infinite for all monotone

decreasing zero-infinity valued temperature schedules, with the exception of the infinity-valued

-temperature schedule. We can then conclude that, the only monotone decreasing zero-infinity

valued temperature schedule that can possibly be optimal is the infinity-valued one. The previous

conclusion and Lemma 4.4.1 imply there is a temperature schedule T that minimizes (4.4.1) and is

074
1.0.-
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monotone decreasing if and only if the infinity-valued temperature schedule miinimizes (4.4.1).

, Thus, part (b) is proved.

- We will now turn to prove part (c). Since R is symmetric and for all i, j c S, there is a

sequence of matchings, i = i(1), i(1),. . . , i(k) = j, such that Ri(hi(h1+) > 0 for all h such that I < h

- < k, we know that

"lira p[xm (Mo. .... M

exists and is strictly pgositive if T is the infinity-valued temperature schedule. Then there is a J

such that

4 inf P[XjE (Mo, .. Mn} > O. (4.4.3)

Inequality (4.4.3), the fact that M is maximal, and the fact that RM_. M>0 and IM_ I > 1Mi1, for

all i such that I < i 5 n, imply that there exists an e > 0 such that inf P[IXjM I<_m]>e for any

* monotone decreasing zero-infinity valued temperature schedule T. However, Geman and Geman

[4], Hajek [131, among others, have shown that there is a temperature schedule T such that

lim PIXI 1 m! = 0.

Hence, there is a J such that if J then no monotone decreasing zero-infinity valued temperature

*.*., schedule minimizes (4.4.2). Then Lemma 4.4.1 implies that there are no monotone decreasing

1temperature schedules that are optimal. Part (c) is now proved and we are completely done with

the proof of the proposition.

-, * Q
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CHAPTER 5

OPTIMIZATION WITH EQUALITY CONSTRAINTS

5.1. Optimization with Equality Constraints

In this chapter, we consider solving the following equality constrained problem (ECP) by

simulated annealing.

(ECP) minimize f(x)

subject to x e X, h(x) = 0,

where X is the set of solutions, f: X--R, and h(x) = (hi(x), h2(x), . h(x)) for some k > 1.

We can also include inequality constraints in this form, since g(x) < 0 can be written as

max{0,g(x)) = 0. A solution x e X is called feasible if h(x) = 0.

As an example, the following optimization version of the Graph Partitioning Problem [19]

can be written as an equality constrained problem. An instance of this problem is a graph (V,E), a

K
positive integer K, and a set of positive integers ai,a2 , . aK such that Y ai = Ivi. We call

(Vi,V, .... , VK) a partition of V if each Vi is a subset of V, the Vi are disjoint, and their union is

V. The capacity of the partition (VI, ... , VK) is the number of edges [u,v] such that if u C Vi

and v e Vj then i # j. The problem is to find a partition (VI ..... VK) with minimum capacity

and such that IViI - ai = 0 for i = 1, 2, ... , K.

Another optimization problem that can be written as an equality constrained problem is the

optimization version of the Minimum Cut Linear Problem t191. An instance for this problem is a

graph (V,E). The problem is to find a mapping 7c: V-(1,2, ... , VI) that will minimize,

0.r".

, */ **
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max I{(u,v)e E: n(u) < i < ic(v))l

subject to v e V: (v)=j) - = 0 forj = 1, 2 ... IV1.

Penalty methods are techniques used to solve equality constrained problems. The basic idea

of the methods is to substitute some or all of the equality constraints by adding to the cost function

* penalty terms that give a high cost to infeasible points. In this section, we will focus on the qua-

dratic penalty method, which we will describe next, and variations of it. For any scalar c. let us

define the augmented Lagrangian function

L,(xX) = f(x) + XTh(x) + . Ih(x)1I.
2

We refer to c as the penalty parameter and to ), as the multiplier vector (or simply multiplier).

The quadratic penalty method consists of solving a sequence of problems of the form

K min (L(x,k): xE X),

where (Xk: k _ 0) is a bounded sequence and (ck: kO) is a penalty parameter sequence such that 0

*< Ck < Ck+1 for all k > 0. and Ck--)**. For many applications, Xk = 0 for all k > 0. In this section,

we consider using a simulated annealing algorithm to minimize the augmented Lagrangian function

for each ck. Since the running time of simulated annealing is typically very long, we will only

consider L C(',Xk) for k = 0.

., Aragon et al. [20] demonstrated that the quality of solutions produced by the quadratic

penalty method in conjunction with simulated annealing may be sensitive to the value of the

penalty parameter. In their experiments, very large values of co resulted in poor solutions, prob-

ably, because the annealing process was greatly restricted to what state it could move to. For very

small values of co, the final solution of the simulated annealing algorithm was far from being feasi-

ble, and their greedy fix-up algorithm was not effective enough to produce good solutions. To find

a good parameter value experimentally may be impractical, since simulated annealing is typically

b
rU.



80

very time consuming. Hence, it is worthwhile to find penalty methods that perform well over a

wide range of parameter values. We will introduce adaptive penalty methods, which may be

penalty methods of this type.

For the rest of this section, we will describe two adaptive penalty methods and the following

simple hardlimiter penalty method. In Section 5.2, we compare the penalty methods by computer

experiments. For the hardlimiter penalty method, we find an x r X that will minimize f(x) +

p( x,y), where

N' N "-" ' 0 if [x[_<y
07p(x,y/) ={

0, otherwise,

and 7 is a nonnegative scalar parameter. Note that if y = 0 then minimizing f(x) + p(x,y) is

equivalent to solving the equality constrained problem (ECP).

The two adaptive penalty methods we consider are similar to the quadratic penalty method,

because they both involve minimizing an augmented Lagrangian function, but in the adaptive

methods the multiplier is adaptively and periodically adjusted.

The first adaptive penalty method is inspired by the method of multipliers (see [21]), which is

used in nonlinear programming, and the second method is a slight modification of the first. The

procedure of the method of multipliers is as follows. Let (cj: j > 0) be a positive monotone

increasing sequence. For each j, solve

minimize L,.(x,Xj)

subject to x c X,

and if xj is an optimal solution then

ki= Xj + cjh(x,).

'-5 .,.
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Note that in practice, in place of xj, we use the solution Xj found by the simulated annealing algo-

rithm, which is generally not optimal.

In nonlinear programming applications the method of multipliers has advantages over the

iquadratic penalty method. For example, suppose that for the equality constrained problem (ECP)

X = Rn, f: Rn-R, h: Rn--+Rm , and f, ge C2. In addition, suppose the following assumption holds.

Assumption (S) [21]: There is a solution x that is a strict local minimum and a regular point

of ECP, and f, h e C2 on some open sphere centered at x*. Furthermore, x" together with its asso-

ciated Lagrange multiplier vector X* satisfies

XXzTV2(f(x) + X'h(x))z > 0,

for all z 0 with Vh(x)Tz =0.

4 g From Proposition 2.4 of [21], for any value of Xo, there exists a c > 0 such that if cj > c then

xj---)x" and - -4 X, where x* is a locally optimal solution of equality constrained problem and X

is its corresponding Lagrange multiplier. However, if we fix .j = 0 for all j (corresponding to the

3quadratic penalty function method) then to insure that xj converges to a locally optimal solution of

the equality constrained problem we must have cj -- **. This suggests that the method of multi-

pliers may be less sensitive to the values of cj. However, cj must still be sufficiently large. For

T; example, suppose f(x) = -x 2, h(x) = x, and X = [-1,1]. If c < I then the points in X that minimize

L(x,X), for any value of X are in {-l,1), and both -1 and I are infeasible solutions.

For the method of multipliers, it may be necessary to minimize a number of augmented

Lagrangian functions. Since we intend to do the minimization by simulated annealing and simu-

-,, lated annealing, typically, takes a long time, this penalty method may be impractical. This

motivates our next penalty method, which we call the dynamic method of multipliers. In this

C,- penalty method, simulated annealing is used only once to find the minimum of L(x,x), and the

,O



multiplier X is updated every Z iterations during this run. The update rule for X is

,...

=Iw"ZXI + cwhere h is the average value of h(x) observed since the last time X. was updated.

.. Note that X is updated so that h(x) wi2 drift in the direction of zero. Hence, even if L(.,X) is con-

cave we have some hope that the final solution will be close to being feasible.

We list three disadvantages of this method: (1) there is the additional complexity of choosing

parameter Z; (2) if Z is small then updating X could be very time consuming; and (3) computing

h may be time consuming if the number of equality constraints is large. We will set Z equal to the

maximum number of neighbors a state in the annealing process has, which should be a large

number. This is a somewhat arbitrary choice for Z and is not a general recommendation. Note

that we can set Z to be sufficiently large so that the dynamic method of multipliers reduces to the

quadratic penalty method. Since our value of Z will typically be a large value, the dynamic

method of multipliers will be, in a sense, a perturbation of the quadratic penalty method.

The third disadvantage can be eliminated in many cases if l is updated only when h1(x)

changes value or when Xj needs to be updated.

5.2. Experimental Results

In order to compare the different penalty methods of the previous section we applied them to

solve the optimization form of the Graph Partitioning Problem and simulated annealing was used to

perform the optimization. Then computer experiments were done to compare the performance of

the methods. We will first discuss the implementation of each penalty method. Then we will

present and discuss the experimental results.

The basic form of our implementation of simulated annealing for the penalty methods is

shown in Figure 5.2.1 (p. 84). The algorithm in this figure, as well as all other algorithms

presented in this section, is written in pidgin Algol. We refer the reader to [101 for more details of

V.X
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pidgin Algol.

The input to the algorithm is a graph (VE), an integer K, and positive integers

" " K

Cro. 2. . Ck such that c ;, = IV i. For this instance of the problem, the set of states is the set

, "of partitions of V. If the quadratic penalty method, the method of multipliers, or the dynamic

method of multipliers is used then the cost of partition (V .  VK) is its capacity plus*.

K cK
. 1(C' - IVi 1) + (oa1 - IviI)'.

1=1 2 -

If the hardlimiter penalty method is used then the cost of a partition (VI ,  VK) is its capacity

K
plus ' p(ai-V.1,y). Two partitions (VI .  V0 and ..... ,VK) are neighbors if

K

I V, I- I I I =2.

The main section of this algorithm is the while loop, which simulates the annealing process,

,. and the fundamental procedure within the while loop is move(). Procedure move( ) chooses a ran-

dora neighbor of the current partition, each neighbor being equally likely to be chosen. If the cost

-. of the neighbor is at most the cost of the current partition then the neighbor is accepted as the new

* - .? current partition. Otherwise, it accepts this neighbor as the new current partition with probability

exp(- A/), and with probability 1 - exp(- AMI it leaves the current partition as is, where A equals

- the cost of the neighbor minus the cost of the current partition. The temperature parameter T is

* .- decreased, by multiplying it by TFACTOR, and it is decreased after every MCLENGTH calls to

move( ). For our experiments, the value of MCLENGTH was chosen to be the number of neigh-

bors a partition has (=(K-1) IVi). This value of MCLENGTH was used in [22].

After the algorithm decreases T, it checks to see if it ;hould stop simulating the annealing

process. Variable numaccept stores the number of times neighbors were accepted as new current

partitions since the last time T was decreased. If numaccept equals zero then the annealing process

ft

"4 a . .,. --.. o . -.- --.- " -, ." ." ,' - - .% ' *~x k% 
,

. % . ". . .. , " .. - .".. . ' . .o..o' el 
'
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BASIC SIMULATED ANNEALING ALGORITHM FOR
GRAPH PARTITIONING

Input: Graph (VE), positive integer K, positive integers o, ;2 OK.
Output: A feasible partition of V with small capacity.

(VI , VK) :=init-state (), T := init temperature ( );
numaccept := 1, numtemp := 0;
whil (numaccept > 0) and (numtemp < R) dQ

begin
numaccept := 0, numtemp := nurntemp +1;
for i := 1, 2 . MCLENGTH dg move( );
T := TFACTOR * T;

;. nd

if for some i I Vi e i Lh- (V1.  VK) := greedyfix-up (VI ... V;

procedure move ( )

( 1. VK) := random-neighbor (V1, ... , VK);
A:= cost (V ... , VK)- cost (VI ...-,VK);
if A 5 0 then (VI, ..., VK) := (VI ...., VK), numaccept := numaccept +1;

Sels if randunit ( ) - exp (-AM
then (V1 ..., VK) := (1- .... VK), numaccept := numaccept +1;

Send

function randunit ( )
begin return (a random number uniformly distributed on the interval [0, 1])

Figure 5.2.1. The basic implementation of the penalty method for graph partitioning, where the
minimization is done by simulated annealing.

*
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is assumed to be "frxzen" and the simulation is stopped. Variable numtemp stores the number of

times T is decreased If numtemp exceeds a number R then the simulation is also terminated.

Iniualization of the algorithm consists of initializing numtemp and numaccept. and calling

=. i.irtstateu and intttemperatureO Function init.stareO returns a feasible partition of V where the

.:incaling process can start from. Function inittemperature returns an initial value for T. The

* reumcd value is computed by randomly picking one hundred neighbors of an arbitrary feasible

-partiton V .  VK). and, for all neighbors that have bigger cost than (Vt .. , V), the sample

average A of the cost of a neighbor of (V I .... , VK) minus the cost of (VI, . V.K. V) is corn-

puted. The temperature t that is returned is such that exp(-A!T) - 0.4. This method of initializ-

ing the temperature value was also used by Aragon et al. [20] and Kirkpatrick et al. [1].

After the simulation of the annealing process the final partition (VI, ,VK) computed may

(4 |be infeasible The function greedyJfixup (VI. VK) is called and it returns a feasible partition.

It does this by sequentially transfering nodes from subsets Vi to subsets V., such that 1V1 > aj,

and I Vj I < a,, so that each transfer minimizes the increase in the capacity of the resulting partition.

We will now discuss the different implementations of the penalty function methods. For the

hardlimiter (HL) and quadratic (Q) penalty methods, the implementation used is the one in Figure

e 5.2.1. The implementation of the method of multipliers (MM) is shown in Figure 5.2.2. In this

implementation, the penalty parameters c are constant and equal to c and the augmented Lagran-

gian function is minimized J+I times by simulated annealing. The first minimization is done by a

long simulated annealing run and the next J minimizations are done by runs. In between minimi-

zations the multiplier vector X is updated.

The implementation of the dynamic method of multipliers (DMM) is shown in Figure 5.2.3.

It is the same algorithm in Figure 5.2.1. excluding the additional lines enclosed in the two rectan-

gles. These additional lines and the two additional variables Ah = (64 i = 1. 2 ..... K) and

%' - . - S . '
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METHOD OF MULTIPLIERS

bei

(VI, ... , VK) :=initstate (), T:= initjtemperature ( );
for i :=1, 2 ,..... K, dg ?.i := 0;

numaccept := 1, numtemp := 0;
while numaccept > 0) and (numtemp < R) dg

numaccept:= 0, numtemp:= numtemp +1;
frj 1, 2 .... MCLENGTH do move ( );
T:= TFACTOR *T;

t := (TIACTOR)" '" * T;
fari:= 1, 2 . J d

T :=;
forj:=1,2,.... Ko j+.j+c*(ar-IVjl);
numaccept := 1, numtemp := 0;
while (numaccept > 0) and (numtemp < R/J ) do

numaccept := 0, numtemp := numtemp +1;
dfr t := 1.2.... MCLENGTH k move( );

T:= TFACTOR T;m end
nd

if for some i, IV i I then (V1 , .... VK) greedyjfixjip (V1, .... VK);

Figure 5.22. The implementation of the method of multipliers.
I,
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3- "Zcount are used in maintaining X. Note that Ah/Z is the sample mean of oj-lvii since the last

time X was updated.

For the algorithm in Figure 5.2.3, &hi is updated after each call to move(). As remarked in
1

the previous section, this can be very time consuming if K is large. A more efficient method is to

update Ahi only when lVii changes value. To accomplish this we have a global counter globcount

which is incremented immediately after every call to move(), and, for each i, such that 1 : i < K

-'. we have additional variables lastdiffi and lastcoun : lastdiffi equals ai - IviI and lastcounti equals

the value of globcount when AN was updated last. Every time lviI changes value or Xj is to be

4 ~ updated we increment AN. by ai - IVii + (globcount - lastcouni - 1)lastdiffi, set lastdiffi to

a. - l vi , and set lastcounti to globcount.

Our experiments consisted of three cases: (n =240, m= 300, K =2, a, =a2=200), (n=

240, m = 300, K = 2, ai = 160, a2 = 80), and (n = 160, m = 200, K = 4, a, = 02 = 03 = 04 = 40).

For each case, ten graphs were randomly and independently generated where each graph in G(nm)

was equally likely to be generated. Recall G(n,m) is the set of graphs with node set (1, 2,..., n)

and m edges. For each case and parameter value considered, each algorithm was executed once

for each of the ten random graphs. During these ten runs the average number of times T was

decremented (AVG#TDEC) and the average capacity of the final partition (AVGCAP) were

recorded. The number of times T was decremented is related to the running time of the algorithm,

since the number of times T was decremented multiplied by MCLENGTH is equal to the length of

the annealing process simulated.

For all three cases, the average degree of the graph (equal to 21E/IVI) is 2.5 and we com-

pared the following penalty method.

" " hardlimiter penalty method when y =1;

quadratic penalty method when c = 10 " for i = 0, 1 ..... 10;
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DYNAMIC METHOD OF MULTIPLIERS

(VI. ... , VJK): iniLstate ( ,T:= init-temperature )

nuinaccept : 1, numtemp:=Q
while (numaccept > 0) and (numntemp < R) dQ

kbgin
numaccept := 0, numtemp :=numtemp + 1;
far i:=1, 2,.. MCLENGTH d

move (

Zcount: Zcount -1
if Zcount =0 lbsn
fr~gin

Zcoi Z;

T: TFACTOR * T

* Iif for some i I Vi I *ajxbhn (Vi, .... VK) :=greedyjix-..up (V 1., VK);

Figure S.2.3. The implementation of the dynamic method of multipliers.



method of multipliers when J = 4 and c = 10"4 *2 for i = 0, 1, 10,

dynamic method of multipliers when Z = (K-1)IVI and c = l0 "4+i 2 for i = 0, 1,..., 10.

For the hardlimiter penalty method, the quadratic penalty method, and the dynamic method of

multipliers, we let TFACTOR equal 0.9. However, we let TFACTOR equal 0.81 for the method

of multipliers, since it consists of multiple simulated annealing runs. The result was that the sum

of the lengths of the annealing processes simulated were roughly the same for all the penalty

methods. We will now discuss some of the details of each case.

CaseI (n = 240, m = 300, K = 2, or = 02 = 120): In this case, the resulting partition is

required to be balanced. For all penalty methods, we ran all the algorithms with R equal to 250.

We also ran the algorithm for the hardlimiter penalty method for R equal to 50, so that the length

of the annealing process simulated would be roughly the same as for the other penalty methods.

The data are given in tables in Figure 5.2.4 and are plotted in graphs in Figure 5.2.5.

Case 2 (n = 240, m = 300, K = 2, al = 160, 02 = 80): In this case, the partition is required

to be unbalanced. For all penalty methods, we ran all the algorithms with R equal to 250. We

also ran the algorithm for the hardlimiter penalty method with R equal to 40, so that the length of

the annealing processes simulated would be roughly the same as for the other penalty methods.

The data are given in tables in Figure 5.2.6 and plotted in graphs in Figure 5.2.7.

Case 3 (n = 160, m = 200, K = 4, o1 = a2 = a3 = Y4 = 40):

In this case, the partitions should be balanced, but we have four sets to the partition rather

than two as in Case 1. For all penalty methods, we ran all the algorithms with R equal to 75. The

data are given in tables in Figure 5.2.8 and plotted in graphs in Figure 5.2.9.

For all three cases, the quality of solutions for the quadratic penalty method, the dynamic

method of multipliers, and the method of multipliers were dependent on the value of c. Very small

values of c lead to poor solutions, because the solutions found by simulated annealing were far
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AVGCAP AVG#TDEC
R logl 0c Q MM DMM Q MM DMM

250 -4.0 38.8 37.3 37.3 69.5 61.6 40.2
250 -3.5 39.4 39.6 36.2 59.2 52.3 43.2
250 -3.0 38.7 37.0 33.7 54.3 53.6 68.5
250 -2.5 39.1 36.7 34.5 43.6 55.4 60.5
250 -2.0 32.9 34.5 32.4 52.3 57.7 56.9
250 -1.5 33.8 34.6 33.8 45.7 50.9 47.0
250 -1.0 32.6 35.8 32.7 34.7 43.7 35.4
250 -0.5 34.4 35.1 35.5 27.3 33.6 27.1
250 0.0 41.7 43.4 43.6 26.3 23.5 25.7
250 0.5 83.8 80.3 83.3 19.5 27.1 20.4
250 1.0 127.5 125.9 125.9 18.2 24.7 18.8

HL
R AVGCAP AVG#TDEC

250 32.2 235.3
50 33.5 50.0

Figure 5.2.4. Results from computer experiments for Case I (n = 240, m = 300, K = 2, a, = 0 2 =
120). AVGCAP = the average capacity of the final partition and AVG#TDEC = the average
number of times T was decremented. Q = quadratic penalty method; MM = method of multipliers;
DMM = dynamic method of multipliers; and IlL = hardlimiter penalty method.
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Figure 5.25. Graphs of results from computer experiments for Case I (n =240, m = 300, K =2,

7= aY2 = 120). AVGCAP = the average capacity of the final partition and AVG#TDEC = the
average number of times T was decremented. Q = quadratic penalty method; MM = method of
multipliers; DMM = dynamic method of multipliers; and HL =hardlimiter penalty method.
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AVGCAP AVG#TDEC

R logloC Q MM DMM Q MM DMM
250 -4.0 31.6 29.3 30.4 61.2 52.0 37.8
250 -3.5 31.1 28.9 30.3 58.7 51.5 42.8
250 -3.0 29.9 29.3 24.8 42.9 47.7 34.8
250 -2.5 27.4 27.6 23.7 38.8 44.3 37.3
250 -2.0 27.6 26.5 24.7 29.6 39.6 34.6
250 -1.5 23.3 27.1 23.8 35.1 34.2 38.4
250 -1.0 24.5 26.8 24.2 33.7 38.8 30.9
250 -0.5 24.7 28.8 25.7 29.2 34.9 29.6
250 0.0 31.9 32.3 33.9 30.7 32.0 26.9
250 0.5 68.7 66.0 69.3 21.9 25.3 20.1
250 1.0 111.7 109.9 112.4 19.1 22.6 19.0

HL
R AVGCAP AVG#TDEC

250 25.1 83.4
40 25.8 39.3

Figure 5.2.6. Results from computer experiments for Case 2 (n = 240, m = 300, K = 2, a, = 160,
a2 = 80). AVGCAP = the average capacity of the final partition and AVG#TDEC = the average
number of times T was decremented. Q = quadratic penalty method; MM = method of multipliers;
DMM = dynamic method of multipliers; and HIL = hardlimiter penalty method.
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Figure 52.7. Graphs of results from computer experiments for Case 2 (n = 240, m = 300, K = 2,
a1 = 160, 02 = 80). AVGCAP = the average capacity of the final partition and AVG#TDEC = the
average number of times T was decremented. Q = quadratic penalty method; MM = method of
multipliers; DMM = dynamic method of multipliers; and HL = hardlimiter penalty method.
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____ AVGCAP _ ___AVG#TDEC_ __
R log10c QP ALM DALM QP ALM DALM
75 -4.0 47.7 49.2 47.9 74.1 72.4 48.8
75 -3.5 48.8 47.3 45.6 71.5 63.1 42.4
75 -3.0 45.7 45.7 42.0 68.9 66.5 60.1
75 -2.5 43.5 45.7 37.9 53.5 46.8 53.6
75 -2.0 40.7 41.5 38.1 52.2 57.9 53.6
75 -1.5 39.5 41.5 39.1 50.3 53.0 44.7
75 -1.0 39.7 39.2 37.8 42.5 41.1 32.5
75 -0.5 39.9 41.5 41.3 25.9 34. 1 26.7
75 0.0 44.6 43.7 46.1 28.5 28.7 25. 1
75 0.5 94.4 86.0 91.0 21.5 27.3 22.0
75 1.0 132.3 129.9 132.4 19.6 25.9 20.3

HL
R IAVGCAP AVG#TDEC
75 39.3 75

Figure S.2.8. Results from computer experiments for Case 3 (n = 160, m =200, K = 4, cy1 = 072

073 = 04 = 40). AVOCAP = the average capacity of the final partition and AVG#TDEC = the
average number of times T was decremented. Q = quadratic penalty method; MM = method of
multipliers; DMM = dynamic method of multipliers; and HL = hardlimiter penalty method.
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Figure 52.9. Results from computer experiments for Case 3 (n =160, mn = 200, K =4, a, a
,a3 = a4 = 40). AVGCAP = the average capacity of the final partition and AVG#TDEC =theg average number of times T was decremented. Q = quadratic penalty method; MM = method of
multipliers; DMM = dynamic method of multipliers; and H-L = hardlimiter penalty method.
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from satisfying the equality constraints and the greedy fix-up algorithm did not produce near

optimal solutions. Very large values of c lead to poor solutions, because the large quadratic term

in the augmented Lagrangian function restricted the movement of the annealing process.

For all three cases, the dynamic method of multipliers produced low-valued AVGCAP values

"" over the widest range of values of c than the quadratic penalty method or the method of multi-

pliers. In Figure 5.2.5 note that when c equaled 0.001 the dynamic method of multipliers produced

a smaller value of AVGCAP and a larger value of AVG#TDEC than the quadratic penalty method

or the method of multipliers. The implication is that there may be a quality of solution versus run-

ning time tradeoff in Case 1. However, there does not seem to be such a tradeoff in the other two

A . cases.

Note that the dynamic method of multipliers yields better solutions than the quadratic method

for small values of c, while the reverse is true for large values of c. This can partly be explained

by the fact that in the dynamic method of multipliers the linear term of the augmented Lagrangian

function behaves roughly like an extra quadratic term by the way it is updated. Hence, the

dynamic method of multipliers is like a quadratic penalty method but with a larger penalty parame-

ter.

[ ,A final observation is that the hardlimiter penalty method performed well when compared to

the other penalty methods. For Case 1, the AVGCAP value of the hardlimiter method, when R

equals 250, is smaller than the other penalty methods, and the AVGCAP value of the hardlimiter

method, when R equals 50, is within 4% of the smallest AVGCAP value of the other methods.

For Case 2, the AVGCAP value of the hardlimiter method, when R equals 250, is within 8% the

smallest AVGCAP value, and the AVGCAP value of the hardlimiter method, when R equals 40, is

within 11% of the best AVGCAP value. For Case 3, the AVGCAP value of the hardlimiter

penalty method is within 4% of the smallest AVGCAP value of the other penalty methods.
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3Although the hardlimiter penalty method performs well over all cases, for certain values of c the

dynamic method of multipliers produces better solutions for Cases 2 and 3.

We will digress to make a comment on the sensitivity of the quadratic penalty method, the

method of multipliers, and the dynamic method of multipliers to the value of c in our experiments.

The reason why c should not be too small can be explained if we assume that the capacity of parti-

K [j2
tion (VI .. . ,VK) is well approximated by (1-1 - )m, which is the average capacity of

(VI, . .. VK) over all graphs in G(nm). Then the augmented Lagrangian function is well

approximated by r(gl,g2 ... g)

= 1 g2;)M + 7, k( -g.On I- - - gi n2,

i,-I n V-I2 In J

where gi = I Vi /n. The Hessian matrix of r is (-2m+cn2)l, where I is the identity matrix. There-

..fore, c is convex if 2- and concave if c2 In Figures 5.2.5, 5.2.7, and 5.2.9, note that asn2  n2

parameter c decreases, the quality of solutions found by the quadratic penalty method begins to

degrade after c crosses the value of 2m 2m is equal to 0.01 for Cases l and 2 and is equal to
n2 n2

0.016 for Case 3).

5.3. Conclusions

J °,In this chapter, we considered solving the equality constrained problem by simulated anneal-

ing and penalty methods. In particular, we focused on the quadratic penalty method and adaptive

" "variations of it. Our concern with the quadratic penalty method was that resulting solutions were

sensitive to its penalty parameter values. Since simulated annealing is a very time consuming algo-

ON, rithm, finding a good penalty parameter value experimentally could be impractical.
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This leads us to investigate adaptive penalty methods that would perhaps be less sensitive to

parameter values. The two adaptive penalty methods we considered were based on the method of

multipliers, and required the minimization of an augmented Lagrangian function. However, the

multiplier vector of the function is dynamically and periodically adjusted. Of these two adaptive

penalty methods our experiments showed that the dynamic method of multipliers worked best and

produced low-valued solutions over a wider range of penalty parameter values than the quadratic

penalty method. We think further investigation of adaptive penalty methods should be done.
..

'4
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3 CHAPTER 6

CONCLUSIONS

6.1. Summary of Thesis

This thesis consists of a collection of results, most of which concern the finite-time behavior

of simulated annealing.

In Chapters 2 and 3, we analyzed simulated annealing when it is applied to the matching

problem. In Chapter 2, we showed that in the worst case simulated annealing solves the problem

in average time that is at least exponential in the number of nodes of the graph if (a) the simulated

annealing algorithm is the basic simulated annealing algorithm in Subsection 2.2.1 or (b) if we res-

trict our attention to the constant-temperature schedules. An upper bound on the average time it

takes the basic simulated annealing algorithm of Subsection 2.2.1 to find a near maximum match-

ing is also given. If we only require the algorithm to find a matching of size at least a fixed frac-

tion of the size of the maximum matching, this upper bound is polynomial in the number of nodes

of the graph. An estimate on the average time the basic simulated annealing of Subsection 2.2.1

will solve the matching problem for a "typical" graph is given in Chapter 3. We also presented

computer simulation data that demonstrated that this estimate was reasonable. If we restrict our

attention to graphs that have at least as many edges as there are nodes, then the estimate is a poly-

nomial function of the number of nodes of the graph, which contrasts the results in Chapter 2 and

which is encouraging to proponents of simulated annealing.

Since there are efficient algoritms available to solve the matching problem [9]. it is doubtful

that simulated annealing will be used on that problem in practice. However, our analysis seem to

be the first thorough theoretical analysis of the average time complexity of simulated annealing

applied to a nontrivial combinatorial optimization problem. Also, we can at least test our intuition
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and experience against these results. For example, since simulated annealing is a simple heuristic,

we would not expect it to outperform more sophisticated methods in the worst case, and our

exponential average-time lower bounds compared with the O('4TVIEj) time algorithm of [9] cer-

tainly supports this expectation.

In Chapter 4, we presented a collection of results. The template method and some examples

of its use were given in Section 4.2, and the threshold random search algorithm was given in Sec-

tion 4.3. In Section 4.4, we presented conditions which imply that no monotone decreasing tem-

perature schedule is optimal.

The use of adaptive penalty methods to solve equality constrained problems by simulated

annealing was investigated in Chapter 5. One of these methods (the dynamic method of multi-

pliers) was shown, through experiments, to provide low-valued solutions over a wider range of

parameter values than the static penalty method (quadratic penalty method) we considered. We

believe further study of adaptive penalty methods should be done.

6.2. Directions for Future Research on Simulated Annealing

One direction for future research is to extend the results of Section 2.4. Rather than restrict-

ing ourselves to constant temperature schedules we may consider monotone decreasing temperature

schedules. Since we are relaxing the constraints for the temperature schedules, we will have to

consider a smaller set of transition probability matrices than the set R(G) of Section 2.4 in order to

maintain the same lower bound for f.

A second direction for future research is to use a "physicist's" approach to analyze the

behavior of simulated annealing for some NP-Complete problem. What we mean by a physicist's

approach is to make reasonable assumptions to model the annealing process by a process that can

be analyzed. Then experiments should be used to check the accuracy of the model. An example

of this type of analysis, but on a known polynomial-time problem, was done in Chapter 3.

- r
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Consider the system (S, c, R), where S is a set of states, c is a cost function on S, and R is a

probability transition matrix over S. Let (Xk: k 2 0) be an annealing on the system (S, c, R) with

temperature schedule T. Most theoretical research is concerned with determining a good tempera-

ture schedule. However, it may be that the performance of simulated annealing is more dependent

on the choice of R. A third direction for future research is to study how the choice of R affects

the performance of simulated annealing. A related direction for future research is to come up with

-ways to systematically modify R that may improve the performance of the simulated annealing

algorithm. For example, using R2 rather than R may be preferable in certain cases. The template

method may be used to illustrate these cases.

I.

: V'5'- ~
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